Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12220%2F20%3A43900848" target="_blank" >RIV/60076658:12220/20:43900848 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12520/20:43900848
Výsledek na webu
<a href="https://doi.org/10.1016/j.ecolind.2020.106236" target="_blank" >https://doi.org/10.1016/j.ecolind.2020.106236</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecolind.2020.106236" target="_blank" >10.1016/j.ecolind.2020.106236</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters
Popis výsledku v původním jazyce
Chlorophyll-a (Chl-a) and Total Suspended Solids (TSS) are both key indicators of the biophysical status of inland waters, and their continued monitoring is essential. Existing conventional methods (e.g., in situ monitoring) have shown that they are impractical due to their time and space limitations. The recently operated Sentinel-2A satellite offers the potential to have higher temporal, spatial, and spectral resolution images with no cost for monitoring water quality parameters of inland waters. The main aim of this study was to develop a semi-empirical model for predicting water quality parameters by combining Sentinel-2A data and machine learning methods using samples collected from several water reservoirs within the southern part of the Czech Republic, Central Europe. A combination of 10 spectral bands of the Sentinel-2A and 19 spectral indices, as independent variables, were used to train prediction models (i.e., Cubist) and then produce spatial distribution maps for both Chl-a and TSS. The results showed that the prediction accuracy based on Sentinel-2A was adequate for both Chl-a (R-2 = 0.85, RMSEp = 48.572) and TSS (R-2 = 0.80, RMSEp = 19.55). The spatial distribution maps derived from Sentinel-2A performed well where Chl-a and TSS were relatively high. The temporal changes in both Chl-a and TSS could be seen in the distribution maps. The temporal changes are showing that The values of TSS dramatically changed in fishponds compared to sand lakes over time which might be due to indifferent management practices. Overall, it can be concluded that Sentinel-2A, when coupled with machine learning algorithms, could be employed as a reliable, inexpensive, and accurate instrument for monitoring the biophysical status of small inland waters like fishponds and sandpit lakes.
Název v anglickém jazyce
Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters
Popis výsledku anglicky
Chlorophyll-a (Chl-a) and Total Suspended Solids (TSS) are both key indicators of the biophysical status of inland waters, and their continued monitoring is essential. Existing conventional methods (e.g., in situ monitoring) have shown that they are impractical due to their time and space limitations. The recently operated Sentinel-2A satellite offers the potential to have higher temporal, spatial, and spectral resolution images with no cost for monitoring water quality parameters of inland waters. The main aim of this study was to develop a semi-empirical model for predicting water quality parameters by combining Sentinel-2A data and machine learning methods using samples collected from several water reservoirs within the southern part of the Czech Republic, Central Europe. A combination of 10 spectral bands of the Sentinel-2A and 19 spectral indices, as independent variables, were used to train prediction models (i.e., Cubist) and then produce spatial distribution maps for both Chl-a and TSS. The results showed that the prediction accuracy based on Sentinel-2A was adequate for both Chl-a (R-2 = 0.85, RMSEp = 48.572) and TSS (R-2 = 0.80, RMSEp = 19.55). The spatial distribution maps derived from Sentinel-2A performed well where Chl-a and TSS were relatively high. The temporal changes in both Chl-a and TSS could be seen in the distribution maps. The temporal changes are showing that The values of TSS dramatically changed in fishponds compared to sand lakes over time which might be due to indifferent management practices. Overall, it can be concluded that Sentinel-2A, when coupled with machine learning algorithms, could be employed as a reliable, inexpensive, and accurate instrument for monitoring the biophysical status of small inland waters like fishponds and sandpit lakes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecological Indicators
ISSN
1470-160X
e-ISSN
—
Svazek periodika
113
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000523335900024
EID výsledku v databázi Scopus
2-s2.0-85080126885