Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Examining the sensitivity of simulated EnMAP data for estimating chlorophyll-a and total suspended solids in inland waters.

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12220%2F23%3A43907895" target="_blank" >RIV/60076658:12220/23:43907895 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41210/23:94516

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1574954123000870?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1574954123000870?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ecoinf.2023.102058" target="_blank" >10.1016/j.ecoinf.2023.102058</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Examining the sensitivity of simulated EnMAP data for estimating chlorophyll-a and total suspended solids in inland waters.

  • Popis výsledku v původním jazyce

    Our study investigates the capability of the environmental mapping and analysis program (EnMAP) scenes simulated using the EnMAP end-to-end simulator software (EeteS) based on the AISA Eagle airborne data to predict chlorophyll-a (Chl-a) and total suspended solids (TSS) as two of the most crucial water quality indicators. Three machine learning (ML) approaches (principal component regression(PCR), partial least square regression (PLSR) and random forest (RF)) were employed to establish links between the simulated image spectra and the above-mentioned water attributes of the samples collected from several inland water reservoirs within the southern part of the Czech Republic. Airborne hyperspectral images were also used to develop a model to compare its performance with models developed based on the simulated EnMAP data. Adequate prediction accuracy was obtained for both Chl-a (R2 = 0.89, RMSE = 43.06 g/L, and Lin’s concordance correlation coefficient (LCCC) = 0.91) and TSS (R2 = 0.91, RMSE = 17.53 mg/L, and LCCC = 0.94), which were close enough to those obtained from the airborne hyperspectral images. Chl-a and TSS correlated with the wavelengths around 550 nm and 700 to 750 nm of the red and near-infrared (NIR) regions. In addition, the spatial distribution maps derived from the simulated EnMAP were comparable to those obtained from the AISA Eagle airborne data. Overall, it can be concluded that the simulated EnMAP image successfully and reliably predicted and spatially mapped the selected biophysical properties of the small inland water bodies.

  • Název v anglickém jazyce

    Examining the sensitivity of simulated EnMAP data for estimating chlorophyll-a and total suspended solids in inland waters.

  • Popis výsledku anglicky

    Our study investigates the capability of the environmental mapping and analysis program (EnMAP) scenes simulated using the EnMAP end-to-end simulator software (EeteS) based on the AISA Eagle airborne data to predict chlorophyll-a (Chl-a) and total suspended solids (TSS) as two of the most crucial water quality indicators. Three machine learning (ML) approaches (principal component regression(PCR), partial least square regression (PLSR) and random forest (RF)) were employed to establish links between the simulated image spectra and the above-mentioned water attributes of the samples collected from several inland water reservoirs within the southern part of the Czech Republic. Airborne hyperspectral images were also used to develop a model to compare its performance with models developed based on the simulated EnMAP data. Adequate prediction accuracy was obtained for both Chl-a (R2 = 0.89, RMSE = 43.06 g/L, and Lin’s concordance correlation coefficient (LCCC) = 0.91) and TSS (R2 = 0.91, RMSE = 17.53 mg/L, and LCCC = 0.94), which were close enough to those obtained from the airborne hyperspectral images. Chl-a and TSS correlated with the wavelengths around 550 nm and 700 to 750 nm of the red and near-infrared (NIR) regions. In addition, the spatial distribution maps derived from the simulated EnMAP were comparable to those obtained from the AISA Eagle airborne data. Overall, it can be concluded that the simulated EnMAP image successfully and reliably predicted and spatially mapped the selected biophysical properties of the small inland water bodies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10617 - Marine biology, freshwater biology, limnology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ecological Informatics

  • ISSN

    1574-9541

  • e-ISSN

    1878-0512

  • Svazek periodika

    75

  • Číslo periodika v rámci svazku

    neuveden

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    102058

  • Kód UT WoS článku

    000958030600001

  • EID výsledku v databázi Scopus