Tuning spatial parameters of Geographical Random Forest: the case of agricultural drought
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10476888" target="_blank" >RIV/00216208:11310/23:10476888 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6W_Wvim0qd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6W_Wvim0qd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/23361980.2023.14" target="_blank" >10.14712/23361980.2023.14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tuning spatial parameters of Geographical Random Forest: the case of agricultural drought
Popis výsledku v původním jazyce
Machine learning algorithms are widely used methods in geographical research. However, these algorithms are not properly exploit-ing the underlying spatial relationships present in the geographical data. One of the approaches, which addresses this problem, is based on an ensemble of local models, which are constructed from samples in close proximity to the location of prediction. This concept was applied to the Random Forest (RF) algorithm, creating a Geographical Random Forest (GRF). This study aims to further develop GRF by tuning the spatial parameters for each location in case of agricultural drought. In addition to tuning, the explan-atory property of RF within the framework GRF is explored. Four machine learning models were constructed; regular RF, regular RF with spatial covariates, GRF, and GRF with the tuning of spatial parameters. Models were evaluated using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Although the decrease in RMSE in this very case is relatively small, the method may provide higher improvement with different datasets.
Název v anglickém jazyce
Tuning spatial parameters of Geographical Random Forest: the case of agricultural drought
Popis výsledku anglicky
Machine learning algorithms are widely used methods in geographical research. However, these algorithms are not properly exploit-ing the underlying spatial relationships present in the geographical data. One of the approaches, which addresses this problem, is based on an ensemble of local models, which are constructed from samples in close proximity to the location of prediction. This concept was applied to the Random Forest (RF) algorithm, creating a Geographical Random Forest (GRF). This study aims to further develop GRF by tuning the spatial parameters for each location in case of agricultural drought. In addition to tuning, the explan-atory property of RF within the framework GRF is explored. Four machine learning models were constructed; regular RF, regular RF with spatial covariates, GRF, and GRF with the tuning of spatial parameters. Models were evaluated using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Although the decrease in RMSE in this very case is relatively small, the method may provide higher improvement with different datasets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Carolinae. Geographica
ISSN
0300-5402
e-ISSN
2336-1980
Svazek periodika
58
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
13
Strana od-do
187-199
Kód UT WoS článku
001127598400002
EID výsledku v databázi Scopus
2-s2.0-85182361882