Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A problem of probability density function estimation for large dimensional spaces with many low-influential dimensions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU147270" target="_blank" >RIV/00216305:26210/21:PU147270 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scipedia.com/public/Suja_et_al_2021a" target="_blank" >https://www.scipedia.com/public/Suja_et_al_2021a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23967/wccm-eccomas.2020.037" target="_blank" >10.23967/wccm-eccomas.2020.037</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A problem of probability density function estimation for large dimensional spaces with many low-influential dimensions

  • Popis výsledku v původním jazyce

    All engineering problems consider uncertainties. These range from small production uncertainties to large-scale uncertainties coming from outside, such as variable wind speed or sunlight. Currently, modern methods for uncertainty propagation have large difficulties with estimation of statistics for large-scale problems which considers hundreds of these uncertain parameters. Due to the complexity of the problem and limitations of the modern methods, a common approach for modelling large scale problems is to select a few important parameters and model statistics for these parameters. However, this can lead to an important problem. In this paper, an application of the UptimAI’s UQ propagation algorithm is used to discuss a new problem arising from very high dimensional spaces where a large number of parameters have negligible impact on the final solution. In other words, when a problem consists of a great number of uncertain design parameters, common practice is to focus on the most important ones and neglect the non-influential ones. However, a combination of a great number of noninfluential parameters can lead to completely different results. This is especially a problem for modelling large dimensional statistical models where a common approach is to perform sensitivity analysis and neglect the non-influential variables, i.e. set the non-influential variables to nominal value. Therefore, using a common approach of neglecting the non-influential variables could lead to a dramatic error and hence, we call this problem ”many times nothing killed a horse”. This problem cannot be observed for cases with a small number of design parameters, which are commonly solved in statistical modelling. The reason for this issue is that the combined influence of neglected variables is extremely small and such that has no influence on the final output. Application of the UptimAl’s UQ propagation algorithm to modern engineering problems and the possibilities of mitigation of the cumulat

  • Název v anglickém jazyce

    A problem of probability density function estimation for large dimensional spaces with many low-influential dimensions

  • Popis výsledku anglicky

    All engineering problems consider uncertainties. These range from small production uncertainties to large-scale uncertainties coming from outside, such as variable wind speed or sunlight. Currently, modern methods for uncertainty propagation have large difficulties with estimation of statistics for large-scale problems which considers hundreds of these uncertain parameters. Due to the complexity of the problem and limitations of the modern methods, a common approach for modelling large scale problems is to select a few important parameters and model statistics for these parameters. However, this can lead to an important problem. In this paper, an application of the UptimAI’s UQ propagation algorithm is used to discuss a new problem arising from very high dimensional spaces where a large number of parameters have negligible impact on the final solution. In other words, when a problem consists of a great number of uncertain design parameters, common practice is to focus on the most important ones and neglect the non-influential ones. However, a combination of a great number of noninfluential parameters can lead to completely different results. This is especially a problem for modelling large dimensional statistical models where a common approach is to perform sensitivity analysis and neglect the non-influential variables, i.e. set the non-influential variables to nominal value. Therefore, using a common approach of neglecting the non-influential variables could lead to a dramatic error and hence, we call this problem ”many times nothing killed a horse”. This problem cannot be observed for cases with a small number of design parameters, which are commonly solved in statistical modelling. The reason for this issue is that the combined influence of neglected variables is extremely small and such that has no influence on the final output. Application of the UptimAl’s UQ propagation algorithm to modern engineering problems and the possibilities of mitigation of the cumulat

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    14th WCCM-ECCOMAS Congress 2020

  • ISBN

  • ISSN

    2696-6999

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Název nakladatele

    scipedia

  • Místo vydání

    neuveden

  • Místo konání akce

    Paris

  • Datum konání akce

    11. 1. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku