Estimating flashpoints of fuels and chemical compounds using hybrid machine-learning techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144660" target="_blank" >RIV/00216305:26210/22:PU144660 - isvavai.cz</a>
Výsledek na webu
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0016236122011449" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0016236122011449</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fuel.2022.124292" target="_blank" >10.1016/j.fuel.2022.124292</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating flashpoints of fuels and chemical compounds using hybrid machine-learning techniques
Popis výsledku v původním jazyce
Flashpoint of organic materials is a crucial physical property in industrial applications and laboratory experiments, which provides information on safety standards and needed precautions in handling various organic materials. Proposed methods to determine the flashpoint of an organic material suffer from dependency on other physical properties of the chemical or demand complicated calculations which are time-consuming. In this work, a direct system model is proposed to anticipate the flashpoints of organic materials for a wide range of chemical compounds. The following models of genetic algorithm-adaptive neuro-fuzzy inference system, the least-squares version of the support vector machine, particle swarm optimisation-adaptive neuro-fuzzy inference system, and artificial neural network were applied to develop the model. This system model can speed up the flashpoint determination process and its accuracy. It can also anticipate the flashpoints of new organic materials. 79 functional groups were gathered to form a group contribution method to estimate the flashpoints of various chemical compounds. The functional groups were correlated with the model, known as the committee machine intelligent system, which performs accurately to prognosticate the flashpoint for every compound. 1,378 chemical compounds of different chemical categories were used to develop the model, making it suitable to estimate the flashpoints. This system model can determine or anticipate the flashpoints of organic materials with high accuracy and provide useful information for safety considerations in laboratory and industrial applications.
Název v anglickém jazyce
Estimating flashpoints of fuels and chemical compounds using hybrid machine-learning techniques
Popis výsledku anglicky
Flashpoint of organic materials is a crucial physical property in industrial applications and laboratory experiments, which provides information on safety standards and needed precautions in handling various organic materials. Proposed methods to determine the flashpoint of an organic material suffer from dependency on other physical properties of the chemical or demand complicated calculations which are time-consuming. In this work, a direct system model is proposed to anticipate the flashpoints of organic materials for a wide range of chemical compounds. The following models of genetic algorithm-adaptive neuro-fuzzy inference system, the least-squares version of the support vector machine, particle swarm optimisation-adaptive neuro-fuzzy inference system, and artificial neural network were applied to develop the model. This system model can speed up the flashpoint determination process and its accuracy. It can also anticipate the flashpoints of new organic materials. 79 functional groups were gathered to form a group contribution method to estimate the flashpoints of various chemical compounds. The functional groups were correlated with the model, known as the committee machine intelligent system, which performs accurately to prognosticate the flashpoint for every compound. 1,378 chemical compounds of different chemical categories were used to develop the model, making it suitable to estimate the flashpoints. This system model can determine or anticipate the flashpoints of organic materials with high accuracy and provide useful information for safety considerations in laboratory and industrial applications.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUEL
ISSN
0016-2361
e-ISSN
1873-7153
Svazek periodika
neuveden
Číslo periodika v rámci svazku
323
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
124292-124292
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85129568050