Asymptotic solution for interface crack between two materials governed by dipolar gradient elasticity: Amplitude factor evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144851" target="_blank" >RIV/00216305:26210/22:PU144851 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167844222001264" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167844222001264</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tafmec.2022.103378" target="_blank" >10.1016/j.tafmec.2022.103378</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymptotic solution for interface crack between two materials governed by dipolar gradient elasticity: Amplitude factor evaluation
Popis výsledku v původním jazyce
The procedure of assessing the amplitude factors in the asymptotic solution for the interface crack between the materials obeying the isotropic gradient elasticity is developed. The boundary conditions at tip of the crack are applied to assemble the eigenvalue problem from which the stress exponents with the appropriate eigenvectors of the regular and auxiliary solutions are evaluated. The amplitude factors of the asymptotic solution are computed from the two-state integrals in which the regular, auxiliary and particular finite element solution represent the independent equilibrium states. The concept of the two-state integral method is based on Betti's reciprocal theorem, which is frequently utilized in classical fracture mechanics. The present work extends its application to the general fracture problem in strain gradient elasticity.
Název v anglickém jazyce
Asymptotic solution for interface crack between two materials governed by dipolar gradient elasticity: Amplitude factor evaluation
Popis výsledku anglicky
The procedure of assessing the amplitude factors in the asymptotic solution for the interface crack between the materials obeying the isotropic gradient elasticity is developed. The boundary conditions at tip of the crack are applied to assemble the eigenvalue problem from which the stress exponents with the appropriate eigenvectors of the regular and auxiliary solutions are evaluated. The amplitude factors of the asymptotic solution are computed from the two-state integrals in which the regular, auxiliary and particular finite element solution represent the independent equilibrium states. The concept of the two-state integral method is based on Betti's reciprocal theorem, which is frequently utilized in classical fracture mechanics. The present work extends its application to the general fracture problem in strain gradient elasticity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical and Applied Fracture Mechanics
ISSN
0167-8442
e-ISSN
1872-7638
Svazek periodika
120
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
103378-103378
Kód UT WoS článku
000803883500004
EID výsledku v databázi Scopus
—