Assessment of amplitude factors of asymptotic expansion at crack tip in flexoelectric solid under mode I and II loadings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU148519" target="_blank" >RIV/00216305:26210/23:PU148519 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020768323000914?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020768323000914?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijsolstr.2023.112194" target="_blank" >10.1016/j.ijsolstr.2023.112194</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessment of amplitude factors of asymptotic expansion at crack tip in flexoelectric solid under mode I and II loadings
Popis výsledku v původním jazyce
The direct flexoelectric effect is a consequence of the polarization of the material, which is proportional to the strain gradients. The strain gradients are prominent near material defects, especially at the crack tips, where the flexoelectric effect redistributes the stress field and consequently influences the crack propagation. The flexoelectricity is a size dependent effect, i.e. it depends on an internal material length parameter as the additional material characteristic. This fact makes the equilibrium, constitutive, and boundary equations complicated as well as the asymptotic solution at the crack tip contrary to the asymptotic solution in the linear elastic fracture mechanics. The matched asymptotic expansion method is applied to derive the expressions for the amplitude factors that appear in the flexoelectric asymptotic solution for the crack as functions of the stress intensity factors in the loadings of mode I or mode II. The application of the matched asymptotic expansion method is conditioned by the knowledge of the so-called boundary layer, which is evaluated from the energetic criteria at the crack tip.
Název v anglickém jazyce
Assessment of amplitude factors of asymptotic expansion at crack tip in flexoelectric solid under mode I and II loadings
Popis výsledku anglicky
The direct flexoelectric effect is a consequence of the polarization of the material, which is proportional to the strain gradients. The strain gradients are prominent near material defects, especially at the crack tips, where the flexoelectric effect redistributes the stress field and consequently influences the crack propagation. The flexoelectricity is a size dependent effect, i.e. it depends on an internal material length parameter as the additional material characteristic. This fact makes the equilibrium, constitutive, and boundary equations complicated as well as the asymptotic solution at the crack tip contrary to the asymptotic solution in the linear elastic fracture mechanics. The matched asymptotic expansion method is applied to derive the expressions for the amplitude factors that appear in the flexoelectric asymptotic solution for the crack as functions of the stress intensity factors in the loadings of mode I or mode II. The application of the matched asymptotic expansion method is conditioned by the knowledge of the so-called boundary layer, which is evaluated from the energetic criteria at the crack tip.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
ISSN
0020-7683
e-ISSN
1879-2146
Svazek periodika
269
Číslo periodika v rámci svazku
1.5.2023
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
112194-112194
Kód UT WoS článku
000971280400001
EID výsledku v databázi Scopus
2-s2.0-85149903937