Accounting for regional water recyclability or scarcity using Machine Learning and Pinch Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145542" target="_blank" >RIV/00216305:26210/22:PU145542 - isvavai.cz</a>
Výsledek na webu
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0959652622028475" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0959652622028475</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jclepro.2022.133260" target="_blank" >10.1016/j.jclepro.2022.133260</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accounting for regional water recyclability or scarcity using Machine Learning and Pinch Analysis
Popis výsledku v původním jazyce
Water stress is becoming a major concern worldwide because of the lack of fresh resources to meet growing water demand in the face of climate change. Resources recycling is a viable option, but the main dilemma is to define a proper water quality grading system. This paper proposes a hybrid framework combining Machine Learning (ML) with Process Integration (PI) tools for assessing the regional water scarcity and recycling potential. The procedure involves defining the quality of water resources using supervised or unsupervised ML. Supervised ML (Classification) is employed when the data samples' origins or quality levels are known. The data can be sampled from an existing recycling system. The unsupervised ML (Clustering) method is used when quality levels are unknown. Data dimensionality reduction or expansion methods are used on the dataset to yield better classification or clustering outcomes. Once the hierarchical quality classes/clusters are revealed, the PI approach of Pinch Analysis is applied with the defined quality categories for planning water exchange systems (e.g., urban water networks or industrial parks). The method not only identifies the quality bottleneck of the system but also reveals the fresh resources deficit or excess of system supplies based on the defined quality clusters. This novel concept is demonstrated with case studies featuring different water sources and scenarios. Results show that the hybrid approach can categorise the water sources effectively, and depending on the number of defined clusters/categories, the water recycling potential can be different (e.g. with 5 clusters, the recyclability rate is 44%, while with 2 clusters, the recyclability rate can increase to 78% for the case study). The framework could serve as a guideline for regional authorities to manage the water resources according to their own water resources and properties database.
Název v anglickém jazyce
Accounting for regional water recyclability or scarcity using Machine Learning and Pinch Analysis
Popis výsledku anglicky
Water stress is becoming a major concern worldwide because of the lack of fresh resources to meet growing water demand in the face of climate change. Resources recycling is a viable option, but the main dilemma is to define a proper water quality grading system. This paper proposes a hybrid framework combining Machine Learning (ML) with Process Integration (PI) tools for assessing the regional water scarcity and recycling potential. The procedure involves defining the quality of water resources using supervised or unsupervised ML. Supervised ML (Classification) is employed when the data samples' origins or quality levels are known. The data can be sampled from an existing recycling system. The unsupervised ML (Clustering) method is used when quality levels are unknown. Data dimensionality reduction or expansion methods are used on the dataset to yield better classification or clustering outcomes. Once the hierarchical quality classes/clusters are revealed, the PI approach of Pinch Analysis is applied with the defined quality categories for planning water exchange systems (e.g., urban water networks or industrial parks). The method not only identifies the quality bottleneck of the system but also reveals the fresh resources deficit or excess of system supplies based on the defined quality clusters. This novel concept is demonstrated with case studies featuring different water sources and scenarios. Results show that the hybrid approach can categorise the water sources effectively, and depending on the number of defined clusters/categories, the water recycling potential can be different (e.g. with 5 clusters, the recyclability rate is 44%, while with 2 clusters, the recyclability rate can increase to 78% for the case study). The framework could serve as a guideline for regional authorities to manage the water resources according to their own water resources and properties database.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cleaner Production
ISSN
0959-6526
e-ISSN
1879-1786
Svazek periodika
neuveden
Číslo periodika v rámci svazku
368
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
133260-133260
Kód UT WoS článku
000840978200005
EID výsledku v databázi Scopus
2-s2.0-85135566150