Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Accounting for regional water recyclability or scarcity using Machine Learning and Pinch Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145542" target="_blank" >RIV/00216305:26210/22:PU145542 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0959652622028475" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0959652622028475</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jclepro.2022.133260" target="_blank" >10.1016/j.jclepro.2022.133260</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Accounting for regional water recyclability or scarcity using Machine Learning and Pinch Analysis

  • Popis výsledku v původním jazyce

    Water stress is becoming a major concern worldwide because of the lack of fresh resources to meet growing water demand in the face of climate change. Resources recycling is a viable option, but the main dilemma is to define a proper water quality grading system. This paper proposes a hybrid framework combining Machine Learning (ML) with Process Integration (PI) tools for assessing the regional water scarcity and recycling potential. The procedure involves defining the quality of water resources using supervised or unsupervised ML. Supervised ML (Classification) is employed when the data samples' origins or quality levels are known. The data can be sampled from an existing recycling system. The unsupervised ML (Clustering) method is used when quality levels are unknown. Data dimensionality reduction or expansion methods are used on the dataset to yield better classification or clustering outcomes. Once the hierarchical quality classes/clusters are revealed, the PI approach of Pinch Analysis is applied with the defined quality categories for planning water exchange systems (e.g., urban water networks or industrial parks). The method not only identifies the quality bottleneck of the system but also reveals the fresh resources deficit or excess of system supplies based on the defined quality clusters. This novel concept is demonstrated with case studies featuring different water sources and scenarios. Results show that the hybrid approach can categorise the water sources effectively, and depending on the number of defined clusters/categories, the water recycling potential can be different (e.g. with 5 clusters, the recyclability rate is 44%, while with 2 clusters, the recyclability rate can increase to 78% for the case study). The framework could serve as a guideline for regional authorities to manage the water resources according to their own water resources and properties database.

  • Název v anglickém jazyce

    Accounting for regional water recyclability or scarcity using Machine Learning and Pinch Analysis

  • Popis výsledku anglicky

    Water stress is becoming a major concern worldwide because of the lack of fresh resources to meet growing water demand in the face of climate change. Resources recycling is a viable option, but the main dilemma is to define a proper water quality grading system. This paper proposes a hybrid framework combining Machine Learning (ML) with Process Integration (PI) tools for assessing the regional water scarcity and recycling potential. The procedure involves defining the quality of water resources using supervised or unsupervised ML. Supervised ML (Classification) is employed when the data samples' origins or quality levels are known. The data can be sampled from an existing recycling system. The unsupervised ML (Clustering) method is used when quality levels are unknown. Data dimensionality reduction or expansion methods are used on the dataset to yield better classification or clustering outcomes. Once the hierarchical quality classes/clusters are revealed, the PI approach of Pinch Analysis is applied with the defined quality categories for planning water exchange systems (e.g., urban water networks or industrial parks). The method not only identifies the quality bottleneck of the system but also reveals the fresh resources deficit or excess of system supplies based on the defined quality clusters. This novel concept is demonstrated with case studies featuring different water sources and scenarios. Results show that the hybrid approach can categorise the water sources effectively, and depending on the number of defined clusters/categories, the water recycling potential can be different (e.g. with 5 clusters, the recyclability rate is 44%, while with 2 clusters, the recyclability rate can increase to 78% for the case study). The framework could serve as a guideline for regional authorities to manage the water resources according to their own water resources and properties database.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Cleaner Production

  • ISSN

    0959-6526

  • e-ISSN

    1879-1786

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    368

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    133260-133260

  • Kód UT WoS článku

    000840978200005

  • EID výsledku v databázi Scopus

    2-s2.0-85135566150