Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145630" target="_blank" >RIV/00216305:26210/22:PU145630 - isvavai.cz</a>
Výsledek na webu
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222022095" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222022095</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2022.125325" target="_blank" >10.1016/j.energy.2022.125325</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines
Popis výsledku v původním jazyce
The operation monitoring of multi-product pipelines helps to grasp the operation dynamics, detect abnormal situations in time, and assist on-site operation management. However, due to the complexity of the scheduling plan, the operating conditions of pipelines change frequently, which makes it difficult to accurately recognise condition types. To solve the above problem, an intelligent monitoring framework for operating conditions is proposed to simultaneously achieve the system recognition of steady, unsteady, and abnormal conditions. (i) The proposed monitoring framework extracts temporal and spatial characteristics of condition samples through four modules: Modules 1 and 2 form an unsupervised model for monitoring state changes and capturing temporal characteristics of condition samples; Module 3 is utilised to capture the spatial characteristics; the fusion layer based on Module 4 is applied to nonlinearly fit the spatiotemporal characteristics, and while monitoring the status changes of condition, it can also accurately recognise whether the condition is normal operation adjustment or abnormal condition. (ii) Taking a simulated pipeline and a real pipeline as examples, the effectiveness of the proposed monitoring framework is verified, and the accuracy, precision, recall, and F1 score of the recognition results reach 98.56%, 98.56%, 97.68%, and 98.12%. (iii) Through the sensitivity analysis of each module, accuracy, precision, recall, and F1 score are reduced to 96.10%, 96.10%, 95.83%, and 96.83% (i.e., only 2.46%, 2.46%, 1.85%, 1.29% differences) without Module I, which proves that the framework has strong robustness and generalisation. (iv) Finally, an intelligent analysis and control system of multi-product pipelines is designed for future applications. Consequently, the proposed intelligent monitoring framework can guide the safe operation and management of multi-product pipelines on-site.
Název v anglickém jazyce
Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines
Popis výsledku anglicky
The operation monitoring of multi-product pipelines helps to grasp the operation dynamics, detect abnormal situations in time, and assist on-site operation management. However, due to the complexity of the scheduling plan, the operating conditions of pipelines change frequently, which makes it difficult to accurately recognise condition types. To solve the above problem, an intelligent monitoring framework for operating conditions is proposed to simultaneously achieve the system recognition of steady, unsteady, and abnormal conditions. (i) The proposed monitoring framework extracts temporal and spatial characteristics of condition samples through four modules: Modules 1 and 2 form an unsupervised model for monitoring state changes and capturing temporal characteristics of condition samples; Module 3 is utilised to capture the spatial characteristics; the fusion layer based on Module 4 is applied to nonlinearly fit the spatiotemporal characteristics, and while monitoring the status changes of condition, it can also accurately recognise whether the condition is normal operation adjustment or abnormal condition. (ii) Taking a simulated pipeline and a real pipeline as examples, the effectiveness of the proposed monitoring framework is verified, and the accuracy, precision, recall, and F1 score of the recognition results reach 98.56%, 98.56%, 97.68%, and 98.12%. (iii) Through the sensitivity analysis of each module, accuracy, precision, recall, and F1 score are reduced to 96.10%, 96.10%, 95.83%, and 96.83% (i.e., only 2.46%, 2.46%, 1.85%, 1.29% differences) without Module I, which proves that the framework has strong robustness and generalisation. (iv) Finally, an intelligent analysis and control system of multi-product pipelines is designed for future applications. Consequently, the proposed intelligent monitoring framework can guide the safe operation and management of multi-product pipelines on-site.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy
ISSN
0360-5442
e-ISSN
1873-6785
Svazek periodika
neuveden
Číslo periodika v rámci svazku
261
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
„“-„“
Kód UT WoS článku
000858922100002
EID výsledku v databázi Scopus
2-s2.0-85137288146