Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deeppipe: Operating Condition Recognition of Multiproduct Pipeline Based on KPCA-CNN

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU147471" target="_blank" >RIV/00216305:26210/22:PU147471 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ascelibrary.org/doi/10.1061/%28ASCE%29PS.1949-1204.0000641" target="_blank" >https://ascelibrary.org/doi/10.1061/%28ASCE%29PS.1949-1204.0000641</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1061/(ASCE)PS.1949-1204.0000641" target="_blank" >10.1061/(ASCE)PS.1949-1204.0000641</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deeppipe: Operating Condition Recognition of Multiproduct Pipeline Based on KPCA-CNN

  • Popis výsledku v původním jazyce

    Operational monitoring of pipelines can prevent environmental and economic losses. However, pipeline data have the characteristics of high dimension and nonlinear coupling, which makes it difficult to determine the relationship between the data and process, resulting in a high rate of misjudgment of the operating condition. To address this issue, an operating condition recognition model based on kernel principal component analysis (KPCA)-convolutional neural network (CNN) is proposed. Deeppipe refers to the use of deep learning algorithms to solve pipeline-related problems. Considering the spatial and time-series characteristics of the pipeline, the inlet and outlet pressure matrixes of the initial station, intermediate station, and terminal station are constructed. Subsequently, the features of the pressure matrix in the time domain, frequency domain, and energy domain are extracted. KPCA is employed to obtain the reconstructed feature matrix, which is used as the input of the proposed CNN recognition model. Taking two multiproduct pipelines as examples, the effectiveness of the KPCA-CNN recognition model is verified while compared with traditional nonlinear classification models (e.g., artificial neural network, decision tree, random forest, and others). The results show that the proposed model has the highest accuracy, precision, recall, and F1 score, and all reach 100%, which has a certain guiding significance for the monitoring and management of onsite pipelines.

  • Název v anglickém jazyce

    Deeppipe: Operating Condition Recognition of Multiproduct Pipeline Based on KPCA-CNN

  • Popis výsledku anglicky

    Operational monitoring of pipelines can prevent environmental and economic losses. However, pipeline data have the characteristics of high dimension and nonlinear coupling, which makes it difficult to determine the relationship between the data and process, resulting in a high rate of misjudgment of the operating condition. To address this issue, an operating condition recognition model based on kernel principal component analysis (KPCA)-convolutional neural network (CNN) is proposed. Deeppipe refers to the use of deep learning algorithms to solve pipeline-related problems. Considering the spatial and time-series characteristics of the pipeline, the inlet and outlet pressure matrixes of the initial station, intermediate station, and terminal station are constructed. Subsequently, the features of the pressure matrix in the time domain, frequency domain, and energy domain are extracted. KPCA is employed to obtain the reconstructed feature matrix, which is used as the input of the proposed CNN recognition model. Taking two multiproduct pipelines as examples, the effectiveness of the KPCA-CNN recognition model is verified while compared with traditional nonlinear classification models (e.g., artificial neural network, decision tree, random forest, and others). The results show that the proposed model has the highest accuracy, precision, recall, and F1 score, and all reach 100%, which has a certain guiding significance for the monitoring and management of onsite pipelines.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Pipeline Systems Engineering and Practice

  • ISSN

    1949-1190

  • e-ISSN

    1949-1204

  • Svazek periodika

    2

  • Číslo periodika v rámci svazku

    13

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    04022006-04022006

  • Kód UT WoS článku

    000769062300002

  • EID výsledku v databázi Scopus

    2-s2.0-85124354762