Deeppipe: Operating Condition Recognition of Multiproduct Pipeline Based on KPCA-CNN
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU147471" target="_blank" >RIV/00216305:26210/22:PU147471 - isvavai.cz</a>
Výsledek na webu
<a href="https://ascelibrary.org/doi/10.1061/%28ASCE%29PS.1949-1204.0000641" target="_blank" >https://ascelibrary.org/doi/10.1061/%28ASCE%29PS.1949-1204.0000641</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1061/(ASCE)PS.1949-1204.0000641" target="_blank" >10.1061/(ASCE)PS.1949-1204.0000641</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deeppipe: Operating Condition Recognition of Multiproduct Pipeline Based on KPCA-CNN
Popis výsledku v původním jazyce
Operational monitoring of pipelines can prevent environmental and economic losses. However, pipeline data have the characteristics of high dimension and nonlinear coupling, which makes it difficult to determine the relationship between the data and process, resulting in a high rate of misjudgment of the operating condition. To address this issue, an operating condition recognition model based on kernel principal component analysis (KPCA)-convolutional neural network (CNN) is proposed. Deeppipe refers to the use of deep learning algorithms to solve pipeline-related problems. Considering the spatial and time-series characteristics of the pipeline, the inlet and outlet pressure matrixes of the initial station, intermediate station, and terminal station are constructed. Subsequently, the features of the pressure matrix in the time domain, frequency domain, and energy domain are extracted. KPCA is employed to obtain the reconstructed feature matrix, which is used as the input of the proposed CNN recognition model. Taking two multiproduct pipelines as examples, the effectiveness of the KPCA-CNN recognition model is verified while compared with traditional nonlinear classification models (e.g., artificial neural network, decision tree, random forest, and others). The results show that the proposed model has the highest accuracy, precision, recall, and F1 score, and all reach 100%, which has a certain guiding significance for the monitoring and management of onsite pipelines.
Název v anglickém jazyce
Deeppipe: Operating Condition Recognition of Multiproduct Pipeline Based on KPCA-CNN
Popis výsledku anglicky
Operational monitoring of pipelines can prevent environmental and economic losses. However, pipeline data have the characteristics of high dimension and nonlinear coupling, which makes it difficult to determine the relationship between the data and process, resulting in a high rate of misjudgment of the operating condition. To address this issue, an operating condition recognition model based on kernel principal component analysis (KPCA)-convolutional neural network (CNN) is proposed. Deeppipe refers to the use of deep learning algorithms to solve pipeline-related problems. Considering the spatial and time-series characteristics of the pipeline, the inlet and outlet pressure matrixes of the initial station, intermediate station, and terminal station are constructed. Subsequently, the features of the pressure matrix in the time domain, frequency domain, and energy domain are extracted. KPCA is employed to obtain the reconstructed feature matrix, which is used as the input of the proposed CNN recognition model. Taking two multiproduct pipelines as examples, the effectiveness of the KPCA-CNN recognition model is verified while compared with traditional nonlinear classification models (e.g., artificial neural network, decision tree, random forest, and others). The results show that the proposed model has the highest accuracy, precision, recall, and F1 score, and all reach 100%, which has a certain guiding significance for the monitoring and management of onsite pipelines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Pipeline Systems Engineering and Practice
ISSN
1949-1190
e-ISSN
1949-1204
Svazek periodika
2
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
04022006-04022006
Kód UT WoS článku
000769062300002
EID výsledku v databázi Scopus
2-s2.0-85124354762