Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deeppipe: Theory-guided neural network method for predicting burst pressure of corroded pipelines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144649" target="_blank" >RIV/00216305:26210/22:PU144649 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0957582022003536" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0957582022003536</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.psep.2022.04.036" target="_blank" >10.1016/j.psep.2022.04.036</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deeppipe: Theory-guided neural network method for predicting burst pressure of corroded pipelines

  • Popis výsledku v původním jazyce

    Crude oil and natural gas are the primary energy sources, mainly transported by pipelines. Pipeline safety has to be seriously considered to ensure the continuous and stable transportation of these two types of energy sources. The burst pressure is an important indicator of pipeline safety. Accurate prediction of the burst pressure is of great significance to the design, construction, daily operation, and maintenance of the pipeline. This paper proposes a theory-guided neural network model-based method to predict burst pressure prediction of corroded pipelines, which can incorporate physical principles into the deep learning framework. First, higher-order features with physical meaning are constructed and coupled with the original features to form a new feature space. Then the traditional burst pressure prediction formula Pipeline Corrosion Criterion (PCORRC) is integrated into the model to make full use of the prior knowledge contained in the empirical formula. The designed loss function enables the network to have different weights for different samples and focuses on learning the PCORRC formula to predict samples with large deviations. Finally, the model was verified using a public dataset based on experiments and finite element simulations. The results show that the theory-guided neural network model proposed in this paper has the highest accuracy compared with other models. The correlation coefficient is 0.9945, the root mean square error is 0.562, and the mean absolute percentage error is 2.65%. Further tests have shown that the model is very robust and has good adaptability to different data. This work presented that integrating domain knowledge into the traditional neural network model can effectively improve the performance of burst pressure prediction of the corroded pipeline.

  • Název v anglickém jazyce

    Deeppipe: Theory-guided neural network method for predicting burst pressure of corroded pipelines

  • Popis výsledku anglicky

    Crude oil and natural gas are the primary energy sources, mainly transported by pipelines. Pipeline safety has to be seriously considered to ensure the continuous and stable transportation of these two types of energy sources. The burst pressure is an important indicator of pipeline safety. Accurate prediction of the burst pressure is of great significance to the design, construction, daily operation, and maintenance of the pipeline. This paper proposes a theory-guided neural network model-based method to predict burst pressure prediction of corroded pipelines, which can incorporate physical principles into the deep learning framework. First, higher-order features with physical meaning are constructed and coupled with the original features to form a new feature space. Then the traditional burst pressure prediction formula Pipeline Corrosion Criterion (PCORRC) is integrated into the model to make full use of the prior knowledge contained in the empirical formula. The designed loss function enables the network to have different weights for different samples and focuses on learning the PCORRC formula to predict samples with large deviations. Finally, the model was verified using a public dataset based on experiments and finite element simulations. The results show that the theory-guided neural network model proposed in this paper has the highest accuracy compared with other models. The correlation coefficient is 0.9945, the root mean square error is 0.562, and the mean absolute percentage error is 2.65%. Further tests have shown that the model is very robust and has good adaptability to different data. This work presented that integrating domain knowledge into the traditional neural network model can effectively improve the performance of burst pressure prediction of the corroded pipeline.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Process Safety and Environmental Protection

  • ISSN

    0957-5820

  • e-ISSN

    1744-3598

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    162

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    595-609

  • Kód UT WoS článku

    000803861600004

  • EID výsledku v databázi Scopus

    2-s2.0-85130098436