Deeppipe: Theory-guided neural network method for predicting burst pressure of corroded pipelines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144649" target="_blank" >RIV/00216305:26210/22:PU144649 - isvavai.cz</a>
Výsledek na webu
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0957582022003536" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0957582022003536</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.psep.2022.04.036" target="_blank" >10.1016/j.psep.2022.04.036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deeppipe: Theory-guided neural network method for predicting burst pressure of corroded pipelines
Popis výsledku v původním jazyce
Crude oil and natural gas are the primary energy sources, mainly transported by pipelines. Pipeline safety has to be seriously considered to ensure the continuous and stable transportation of these two types of energy sources. The burst pressure is an important indicator of pipeline safety. Accurate prediction of the burst pressure is of great significance to the design, construction, daily operation, and maintenance of the pipeline. This paper proposes a theory-guided neural network model-based method to predict burst pressure prediction of corroded pipelines, which can incorporate physical principles into the deep learning framework. First, higher-order features with physical meaning are constructed and coupled with the original features to form a new feature space. Then the traditional burst pressure prediction formula Pipeline Corrosion Criterion (PCORRC) is integrated into the model to make full use of the prior knowledge contained in the empirical formula. The designed loss function enables the network to have different weights for different samples and focuses on learning the PCORRC formula to predict samples with large deviations. Finally, the model was verified using a public dataset based on experiments and finite element simulations. The results show that the theory-guided neural network model proposed in this paper has the highest accuracy compared with other models. The correlation coefficient is 0.9945, the root mean square error is 0.562, and the mean absolute percentage error is 2.65%. Further tests have shown that the model is very robust and has good adaptability to different data. This work presented that integrating domain knowledge into the traditional neural network model can effectively improve the performance of burst pressure prediction of the corroded pipeline.
Název v anglickém jazyce
Deeppipe: Theory-guided neural network method for predicting burst pressure of corroded pipelines
Popis výsledku anglicky
Crude oil and natural gas are the primary energy sources, mainly transported by pipelines. Pipeline safety has to be seriously considered to ensure the continuous and stable transportation of these two types of energy sources. The burst pressure is an important indicator of pipeline safety. Accurate prediction of the burst pressure is of great significance to the design, construction, daily operation, and maintenance of the pipeline. This paper proposes a theory-guided neural network model-based method to predict burst pressure prediction of corroded pipelines, which can incorporate physical principles into the deep learning framework. First, higher-order features with physical meaning are constructed and coupled with the original features to form a new feature space. Then the traditional burst pressure prediction formula Pipeline Corrosion Criterion (PCORRC) is integrated into the model to make full use of the prior knowledge contained in the empirical formula. The designed loss function enables the network to have different weights for different samples and focuses on learning the PCORRC formula to predict samples with large deviations. Finally, the model was verified using a public dataset based on experiments and finite element simulations. The results show that the theory-guided neural network model proposed in this paper has the highest accuracy compared with other models. The correlation coefficient is 0.9945, the root mean square error is 0.562, and the mean absolute percentage error is 2.65%. Further tests have shown that the model is very robust and has good adaptability to different data. This work presented that integrating domain knowledge into the traditional neural network model can effectively improve the performance of burst pressure prediction of the corroded pipeline.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Process Safety and Environmental Protection
ISSN
0957-5820
e-ISSN
1744-3598
Svazek periodika
neuveden
Číslo periodika v rámci svazku
162
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
595-609
Kód UT WoS článku
000803861600004
EID výsledku v databázi Scopus
2-s2.0-85130098436