Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deeppipe: A two-stage physics-informed neural network for predicting mixed oil concentration distribution

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150456" target="_blank" >RIV/00216305:26210/23:PU150456 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0360544223008460?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544223008460?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2023.127452" target="_blank" >10.1016/j.energy.2023.127452</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deeppipe: A two-stage physics-informed neural network for predicting mixed oil concentration distribution

  • Popis výsledku v původním jazyce

    Owing to the oil diffusion, a mixed oil segment would inevitably form between two adjacent oil products, leading to economic loss and a reduction of oil product quality. Current works have inherent drawbacks, including computational inapplicability for long-distance pipelines by using numerical methods and unreasonable physical results by using conventional machine learning models. This work proposes a two-stage physics-informed neural network (TS-PINN) method, aiming to provide a highly efficient and precise predictive tool for the mixed oil concentration distribution of multi-product pipelines. In the TS-PINN, the scientific theory and engineering control knowledge of mixed oil diffusion are incorporated into the neural network, which allows the developed neural network model to be capable of exploring the potential physical information of mixed oil and constraining the training process. Subsequently, a two-stage modelling approach is proposed to improve the convergence effect and prediction accuracy of the proposed TS-PINN model. Results from numerical case studies suggest the higher accuracy and robustness achieved by the proposed model compared to the deep neural network, while the root mean square error and mean absolute percentage error gotten by TS-PINN are reduced by 79.5% and 80.5%. Further, the test results on sparse data prove that the TS-PINN achieves a reduction in dependency on available data when training the neural network. Compared with the numerical methods, the TS-PINN reduces the calculation time from several days to hundreds of seconds, it is practicable to predict the mixed oil migration in long-distance pipelines rapidly and accurately using the proposed model.

  • Název v anglickém jazyce

    Deeppipe: A two-stage physics-informed neural network for predicting mixed oil concentration distribution

  • Popis výsledku anglicky

    Owing to the oil diffusion, a mixed oil segment would inevitably form between two adjacent oil products, leading to economic loss and a reduction of oil product quality. Current works have inherent drawbacks, including computational inapplicability for long-distance pipelines by using numerical methods and unreasonable physical results by using conventional machine learning models. This work proposes a two-stage physics-informed neural network (TS-PINN) method, aiming to provide a highly efficient and precise predictive tool for the mixed oil concentration distribution of multi-product pipelines. In the TS-PINN, the scientific theory and engineering control knowledge of mixed oil diffusion are incorporated into the neural network, which allows the developed neural network model to be capable of exploring the potential physical information of mixed oil and constraining the training process. Subsequently, a two-stage modelling approach is proposed to improve the convergence effect and prediction accuracy of the proposed TS-PINN model. Results from numerical case studies suggest the higher accuracy and robustness achieved by the proposed model compared to the deep neural network, while the root mean square error and mean absolute percentage error gotten by TS-PINN are reduced by 79.5% and 80.5%. Further, the test results on sparse data prove that the TS-PINN achieves a reduction in dependency on available data when training the neural network. Compared with the numerical methods, the TS-PINN reduces the calculation time from several days to hundreds of seconds, it is practicable to predict the mixed oil migration in long-distance pipelines rapidly and accurately using the proposed model.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Svazek periodika

    276

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    35

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    000988618300001

  • EID výsledku v databázi Scopus

    2-s2.0-85153217452