Deeppipe: A two-stage physics-informed neural network for predicting mixed oil concentration distribution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150456" target="_blank" >RIV/00216305:26210/23:PU150456 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360544223008460?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544223008460?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2023.127452" target="_blank" >10.1016/j.energy.2023.127452</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deeppipe: A two-stage physics-informed neural network for predicting mixed oil concentration distribution
Popis výsledku v původním jazyce
Owing to the oil diffusion, a mixed oil segment would inevitably form between two adjacent oil products, leading to economic loss and a reduction of oil product quality. Current works have inherent drawbacks, including computational inapplicability for long-distance pipelines by using numerical methods and unreasonable physical results by using conventional machine learning models. This work proposes a two-stage physics-informed neural network (TS-PINN) method, aiming to provide a highly efficient and precise predictive tool for the mixed oil concentration distribution of multi-product pipelines. In the TS-PINN, the scientific theory and engineering control knowledge of mixed oil diffusion are incorporated into the neural network, which allows the developed neural network model to be capable of exploring the potential physical information of mixed oil and constraining the training process. Subsequently, a two-stage modelling approach is proposed to improve the convergence effect and prediction accuracy of the proposed TS-PINN model. Results from numerical case studies suggest the higher accuracy and robustness achieved by the proposed model compared to the deep neural network, while the root mean square error and mean absolute percentage error gotten by TS-PINN are reduced by 79.5% and 80.5%. Further, the test results on sparse data prove that the TS-PINN achieves a reduction in dependency on available data when training the neural network. Compared with the numerical methods, the TS-PINN reduces the calculation time from several days to hundreds of seconds, it is practicable to predict the mixed oil migration in long-distance pipelines rapidly and accurately using the proposed model.
Název v anglickém jazyce
Deeppipe: A two-stage physics-informed neural network for predicting mixed oil concentration distribution
Popis výsledku anglicky
Owing to the oil diffusion, a mixed oil segment would inevitably form between two adjacent oil products, leading to economic loss and a reduction of oil product quality. Current works have inherent drawbacks, including computational inapplicability for long-distance pipelines by using numerical methods and unreasonable physical results by using conventional machine learning models. This work proposes a two-stage physics-informed neural network (TS-PINN) method, aiming to provide a highly efficient and precise predictive tool for the mixed oil concentration distribution of multi-product pipelines. In the TS-PINN, the scientific theory and engineering control knowledge of mixed oil diffusion are incorporated into the neural network, which allows the developed neural network model to be capable of exploring the potential physical information of mixed oil and constraining the training process. Subsequently, a two-stage modelling approach is proposed to improve the convergence effect and prediction accuracy of the proposed TS-PINN model. Results from numerical case studies suggest the higher accuracy and robustness achieved by the proposed model compared to the deep neural network, while the root mean square error and mean absolute percentage error gotten by TS-PINN are reduced by 79.5% and 80.5%. Further, the test results on sparse data prove that the TS-PINN achieves a reduction in dependency on available data when training the neural network. Compared with the numerical methods, the TS-PINN reduces the calculation time from several days to hundreds of seconds, it is practicable to predict the mixed oil migration in long-distance pipelines rapidly and accurately using the proposed model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy
ISSN
0360-5442
e-ISSN
1873-6785
Svazek periodika
276
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
35
Strana od-do
„“-„“
Kód UT WoS článku
000988618300001
EID výsledku v databázi Scopus
2-s2.0-85153217452