A rapid method for composition tracking in hydrogen-blended pipeline using Fourier neural operator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155660" target="_blank" >RIV/00216305:26210/24:PU155660 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.aip.org/aip/pof/article/36/11/116126/3320026/A-rapid-method-for-composition-tracking-in" target="_blank" >https://pubs.aip.org/aip/pof/article/36/11/116126/3320026/A-rapid-method-for-composition-tracking-in</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0235781" target="_blank" >10.1063/5.0235781</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A rapid method for composition tracking in hydrogen-blended pipeline using Fourier neural operator
Popis výsledku v původním jazyce
Blending hydrogen into natural gas for transportation is a crucial approach for achieving the widespread utilization of hydrogen. Tracking the concentration of the hydrogen within the pipeline is important for monitoring gas quality and managing pipeline operations. This study develops a rapid computational model to predict the hydrogen and natural gas concentrations within the pipeline during transportation based on the Fourier Neural Operator (FNO), an operator neural network capable of learning the differential operator in the partial differential equation. In the proposed model, the numerical method is employed to generate datasets, with the spline interpolation used to enhance data smoothness. The initial and boundary conditions are taken as the inputs to accommodate varying transportation scenarios. Comparison results indicate that the proposed model can notably reduce the time needed to predict the hydrogen and natural gas concentrations while maintaining prediction accuracy. The accuracy of the proposed model is validated by comparing its calculated results with the analytical solution and the concentrations of hydrogen and natural gas within the pipeline under two transportation scenarios, with relative errors of 0.49%, 0.31%, and 0.45%, respectively. Notably, the trained model demonstrates strong grid invariance, a type of model generalization. Trained on data generated from a coarse grid of 101 x 41 spatial-temporal resolution, the proposed model can accurately predict results on a fine grid of 401 x 81 spatial-temporal resolution with a relative error of only 0.38%. Regarding the prediction efficiency, the proposed model achieves an average 17.7-fold speedup compared to the numerical method. The positive results indicate that the proposed model can serve as a rapid and accurate solver for the composition transport equation.
Název v anglickém jazyce
A rapid method for composition tracking in hydrogen-blended pipeline using Fourier neural operator
Popis výsledku anglicky
Blending hydrogen into natural gas for transportation is a crucial approach for achieving the widespread utilization of hydrogen. Tracking the concentration of the hydrogen within the pipeline is important for monitoring gas quality and managing pipeline operations. This study develops a rapid computational model to predict the hydrogen and natural gas concentrations within the pipeline during transportation based on the Fourier Neural Operator (FNO), an operator neural network capable of learning the differential operator in the partial differential equation. In the proposed model, the numerical method is employed to generate datasets, with the spline interpolation used to enhance data smoothness. The initial and boundary conditions are taken as the inputs to accommodate varying transportation scenarios. Comparison results indicate that the proposed model can notably reduce the time needed to predict the hydrogen and natural gas concentrations while maintaining prediction accuracy. The accuracy of the proposed model is validated by comparing its calculated results with the analytical solution and the concentrations of hydrogen and natural gas within the pipeline under two transportation scenarios, with relative errors of 0.49%, 0.31%, and 0.45%, respectively. Notably, the trained model demonstrates strong grid invariance, a type of model generalization. Trained on data generated from a coarse grid of 101 x 41 spatial-temporal resolution, the proposed model can accurately predict results on a fine grid of 401 x 81 spatial-temporal resolution with a relative error of only 0.38%. Regarding the prediction efficiency, the proposed model achieves an average 17.7-fold speedup compared to the numerical method. The positive results indicate that the proposed model can serve as a rapid and accurate solver for the composition transport equation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICS OF FLUIDS
ISSN
1070-6631
e-ISSN
1089-7666
Svazek periodika
36
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
116126-116126
Kód UT WoS článku
001353416800049
EID výsledku v databázi Scopus
2-s2.0-85209697786