Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A rapid method for composition tracking in hydrogen-blended pipeline using Fourier neural operator

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155660" target="_blank" >RIV/00216305:26210/24:PU155660 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.aip.org/aip/pof/article/36/11/116126/3320026/A-rapid-method-for-composition-tracking-in" target="_blank" >https://pubs.aip.org/aip/pof/article/36/11/116126/3320026/A-rapid-method-for-composition-tracking-in</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0235781" target="_blank" >10.1063/5.0235781</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A rapid method for composition tracking in hydrogen-blended pipeline using Fourier neural operator

  • Popis výsledku v původním jazyce

    Blending hydrogen into natural gas for transportation is a crucial approach for achieving the widespread utilization of hydrogen. Tracking the concentration of the hydrogen within the pipeline is important for monitoring gas quality and managing pipeline operations. This study develops a rapid computational model to predict the hydrogen and natural gas concentrations within the pipeline during transportation based on the Fourier Neural Operator (FNO), an operator neural network capable of learning the differential operator in the partial differential equation. In the proposed model, the numerical method is employed to generate datasets, with the spline interpolation used to enhance data smoothness. The initial and boundary conditions are taken as the inputs to accommodate varying transportation scenarios. Comparison results indicate that the proposed model can notably reduce the time needed to predict the hydrogen and natural gas concentrations while maintaining prediction accuracy. The accuracy of the proposed model is validated by comparing its calculated results with the analytical solution and the concentrations of hydrogen and natural gas within the pipeline under two transportation scenarios, with relative errors of 0.49%, 0.31%, and 0.45%, respectively. Notably, the trained model demonstrates strong grid invariance, a type of model generalization. Trained on data generated from a coarse grid of 101 x 41 spatial-temporal resolution, the proposed model can accurately predict results on a fine grid of 401 x 81 spatial-temporal resolution with a relative error of only 0.38%. Regarding the prediction efficiency, the proposed model achieves an average 17.7-fold speedup compared to the numerical method. The positive results indicate that the proposed model can serve as a rapid and accurate solver for the composition transport equation.

  • Název v anglickém jazyce

    A rapid method for composition tracking in hydrogen-blended pipeline using Fourier neural operator

  • Popis výsledku anglicky

    Blending hydrogen into natural gas for transportation is a crucial approach for achieving the widespread utilization of hydrogen. Tracking the concentration of the hydrogen within the pipeline is important for monitoring gas quality and managing pipeline operations. This study develops a rapid computational model to predict the hydrogen and natural gas concentrations within the pipeline during transportation based on the Fourier Neural Operator (FNO), an operator neural network capable of learning the differential operator in the partial differential equation. In the proposed model, the numerical method is employed to generate datasets, with the spline interpolation used to enhance data smoothness. The initial and boundary conditions are taken as the inputs to accommodate varying transportation scenarios. Comparison results indicate that the proposed model can notably reduce the time needed to predict the hydrogen and natural gas concentrations while maintaining prediction accuracy. The accuracy of the proposed model is validated by comparing its calculated results with the analytical solution and the concentrations of hydrogen and natural gas within the pipeline under two transportation scenarios, with relative errors of 0.49%, 0.31%, and 0.45%, respectively. Notably, the trained model demonstrates strong grid invariance, a type of model generalization. Trained on data generated from a coarse grid of 101 x 41 spatial-temporal resolution, the proposed model can accurately predict results on a fine grid of 401 x 81 spatial-temporal resolution with a relative error of only 0.38%. Regarding the prediction efficiency, the proposed model achieves an average 17.7-fold speedup compared to the numerical method. The positive results indicate that the proposed model can serve as a rapid and accurate solver for the composition transport equation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PHYSICS OF FLUIDS

  • ISSN

    1070-6631

  • e-ISSN

    1089-7666

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    116126-116126

  • Kód UT WoS článku

    001353416800049

  • EID výsledku v databázi Scopus

    2-s2.0-85209697786