Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155656" target="_blank" >RIV/00216305:26210/24:PU155656 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0360544224001257#:~:text=Coupling%20with%20a%20data-driven%20Bayesian%20neural%20network%20and,of%20soil%20temperature%20field%20is%20proposed%20to%20dynamical" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544224001257#:~:text=Coupling%20with%20a%20data-driven%20Bayesian%20neural%20network%20and,of%20soil%20temperature%20field%20is%20proposed%20to%20dynamical</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2024.130354" target="_blank" >10.1016/j.energy.2024.130354</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation

  • Popis výsledku v původním jazyce

    The thermal simulation of oil pipeline transportation is crucial for ensuring safe transportation of pipelines and optimizing energy consumption. The prediction of the soil temperature field is the key to the thermal calculation for the non-isothermal batch transportation of the buried pipeline, while the standard numerical simulation of the soil temperature field is time-consuming. Coupling with a data-driven Bayesian neural network and mechanism-informed partial differential equation, an efficient and robust prediction model of soil temperature field is proposed to dynamically adapt the spatio-temporal changes of boundary conditions. Based on the soil temperature field predicted by the proposed model, the oil temperature at the outlet of the pipeline is further obtained, which is compared with that from the field data and the standard numerical simulation. It is found that the former is in good agreement with the latter two, verifying the proposed model. However, the calculation of the proposed model only takes 10.59 s, which is 29.53 times faster than the standard numerical simulation. Moreover, the predicted error of the proposed model only changes by 0.12 % (from 3.05 % to 3.17 %) when the training data decreases from 100 % to 2.2 %, which is lower than that of two data-driven surrogate models.

  • Název v anglickém jazyce

    Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation

  • Popis výsledku anglicky

    The thermal simulation of oil pipeline transportation is crucial for ensuring safe transportation of pipelines and optimizing energy consumption. The prediction of the soil temperature field is the key to the thermal calculation for the non-isothermal batch transportation of the buried pipeline, while the standard numerical simulation of the soil temperature field is time-consuming. Coupling with a data-driven Bayesian neural network and mechanism-informed partial differential equation, an efficient and robust prediction model of soil temperature field is proposed to dynamically adapt the spatio-temporal changes of boundary conditions. Based on the soil temperature field predicted by the proposed model, the oil temperature at the outlet of the pipeline is further obtained, which is compared with that from the field data and the standard numerical simulation. It is found that the former is in good agreement with the latter two, verifying the proposed model. However, the calculation of the proposed model only takes 10.59 s, which is 29.53 times faster than the standard numerical simulation. Moreover, the predicted error of the proposed model only changes by 0.12 % (from 3.05 % to 3.17 %) when the training data decreases from 100 % to 2.2 %, which is lower than that of two data-driven surrogate models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Svazek periodika

    292

  • Číslo periodika v rámci svazku

    130354

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    130354-130354

  • Kód UT WoS článku

    001175093200001

  • EID výsledku v databázi Scopus

    2-s2.0-85184061861