Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155656" target="_blank" >RIV/00216305:26210/24:PU155656 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0360544224001257#:~:text=Coupling%20with%20a%20data-driven%20Bayesian%20neural%20network%20and,of%20soil%20temperature%20field%20is%20proposed%20to%20dynamical" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544224001257#:~:text=Coupling%20with%20a%20data-driven%20Bayesian%20neural%20network%20and,of%20soil%20temperature%20field%20is%20proposed%20to%20dynamical</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2024.130354" target="_blank" >10.1016/j.energy.2024.130354</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation
Popis výsledku v původním jazyce
The thermal simulation of oil pipeline transportation is crucial for ensuring safe transportation of pipelines and optimizing energy consumption. The prediction of the soil temperature field is the key to the thermal calculation for the non-isothermal batch transportation of the buried pipeline, while the standard numerical simulation of the soil temperature field is time-consuming. Coupling with a data-driven Bayesian neural network and mechanism-informed partial differential equation, an efficient and robust prediction model of soil temperature field is proposed to dynamically adapt the spatio-temporal changes of boundary conditions. Based on the soil temperature field predicted by the proposed model, the oil temperature at the outlet of the pipeline is further obtained, which is compared with that from the field data and the standard numerical simulation. It is found that the former is in good agreement with the latter two, verifying the proposed model. However, the calculation of the proposed model only takes 10.59 s, which is 29.53 times faster than the standard numerical simulation. Moreover, the predicted error of the proposed model only changes by 0.12 % (from 3.05 % to 3.17 %) when the training data decreases from 100 % to 2.2 %, which is lower than that of two data-driven surrogate models.
Název v anglickém jazyce
Hybrid data-mechanism-driven model of the unsteady soil temperature field for long-buried crude oil pipelines with non-isothermal batch transportation
Popis výsledku anglicky
The thermal simulation of oil pipeline transportation is crucial for ensuring safe transportation of pipelines and optimizing energy consumption. The prediction of the soil temperature field is the key to the thermal calculation for the non-isothermal batch transportation of the buried pipeline, while the standard numerical simulation of the soil temperature field is time-consuming. Coupling with a data-driven Bayesian neural network and mechanism-informed partial differential equation, an efficient and robust prediction model of soil temperature field is proposed to dynamically adapt the spatio-temporal changes of boundary conditions. Based on the soil temperature field predicted by the proposed model, the oil temperature at the outlet of the pipeline is further obtained, which is compared with that from the field data and the standard numerical simulation. It is found that the former is in good agreement with the latter two, verifying the proposed model. However, the calculation of the proposed model only takes 10.59 s, which is 29.53 times faster than the standard numerical simulation. Moreover, the predicted error of the proposed model only changes by 0.12 % (from 3.05 % to 3.17 %) when the training data decreases from 100 % to 2.2 %, which is lower than that of two data-driven surrogate models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy
ISSN
0360-5442
e-ISSN
1873-6785
Svazek periodika
292
Číslo periodika v rámci svazku
130354
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
130354-130354
Kód UT WoS článku
001175093200001
EID výsledku v databázi Scopus
2-s2.0-85184061861