A knowledge-enhanced graph-based temporal-spatial network for natural gas consumption prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU146501" target="_blank" >RIV/00216305:26210/23:PU146501 - isvavai.cz</a>
Výsledek na webu
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222028626" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222028626</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2022.125976" target="_blank" >10.1016/j.energy.2022.125976</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A knowledge-enhanced graph-based temporal-spatial network for natural gas consumption prediction
Popis výsledku v původním jazyce
The accurate prediction of natural gas consumption plays a central role in long-distance pipeline system production and transportation planning, and it becomes even more important during present political situation. The existing prediction methods for natural gas consumption barely consider spatial correlations and domain knowledge. As a result, the study proposes a novel deep learning prediction method (knowledge-enhanced graph-based temporal-spatial network, abbreviated to KE-GB-TSN) for predicting natural gas consumption by integrating domain knowledge into association graph construction and capturing temporal-spatial features via a hybrid deep learning network. This study first applies the domain knowledge that analyses the operation technique of the natural gas pipeline network and combines the historical data to establish an association graph. Subsequently, the historical data and association graphs are input to a hybrid deep learning network to predict natural gas consumption. The comparative experiments are conducted by taking real-world cases of natural gas consumption as examples. At last, a sensitivity analysis of different components combination is carried out to exhibit the significance of each component in the proposed model. The results prove that the proposed model is capable of achieving more accurate and efficient predicted results compared to the advanced models, such as decision trees and gated recurrent units. The Mean Absolute Relative Errors and Root Mean Squared Relative Errors gotten by the proposed model are less than 0.11 and 0.14 in all cases, indicating an improvement compared to previous works. Additionally, it is also suggested that domain knowledge and temporal-spatial correlations are crucial for the excellent performance of the prediction model.
Název v anglickém jazyce
A knowledge-enhanced graph-based temporal-spatial network for natural gas consumption prediction
Popis výsledku anglicky
The accurate prediction of natural gas consumption plays a central role in long-distance pipeline system production and transportation planning, and it becomes even more important during present political situation. The existing prediction methods for natural gas consumption barely consider spatial correlations and domain knowledge. As a result, the study proposes a novel deep learning prediction method (knowledge-enhanced graph-based temporal-spatial network, abbreviated to KE-GB-TSN) for predicting natural gas consumption by integrating domain knowledge into association graph construction and capturing temporal-spatial features via a hybrid deep learning network. This study first applies the domain knowledge that analyses the operation technique of the natural gas pipeline network and combines the historical data to establish an association graph. Subsequently, the historical data and association graphs are input to a hybrid deep learning network to predict natural gas consumption. The comparative experiments are conducted by taking real-world cases of natural gas consumption as examples. At last, a sensitivity analysis of different components combination is carried out to exhibit the significance of each component in the proposed model. The results prove that the proposed model is capable of achieving more accurate and efficient predicted results compared to the advanced models, such as decision trees and gated recurrent units. The Mean Absolute Relative Errors and Root Mean Squared Relative Errors gotten by the proposed model are less than 0.11 and 0.14 in all cases, indicating an improvement compared to previous works. Additionally, it is also suggested that domain knowledge and temporal-spatial correlations are crucial for the excellent performance of the prediction model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy
ISSN
0360-5442
e-ISSN
1873-6785
Svazek periodika
D
Číslo periodika v rámci svazku
263
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
125976-125976
Kód UT WoS článku
000895343100001
EID výsledku v databázi Scopus
2-s2.0-85141790856