Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A hybrid deep learning framework for predicting daily natural gas consumption

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU146473" target="_blank" >RIV/00216305:26210/22:PU146473 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222015924" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0360544222015924</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2022.124689" target="_blank" >10.1016/j.energy.2022.124689</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A hybrid deep learning framework for predicting daily natural gas consumption

  • Popis výsledku v původním jazyce

    Conventional time-series prediction methods for natural gas consumption mainly focus on capturing the temporal feature, neglecting static and dynamic information extraction. The accurate prediction of natural gas consumption possesses of paramount significance in the normal operation of the national economy. This paper proposes a novel method that resolves the deficiency of conventional time series prediction to address this demand via designing a hybrid deep learning framework to extract comprehensive information from gas consumption. The proposed model captures static and dynamic information via encoding gas consumption as matrices and extracts long-term dependency patterns from time series consumption. Subsequently, a customised network is proposed for information fusion. Cases from several different regions in China are studied as examples, and the proposed model is compared with other advanced approaches (such as long short-term memory (LSTM), convolution neural network long short-term memory (CNN-LSTM)). The mean absolute percentage error is reduced by a range of 0.235%-10.303% compared with other models. According to the comparison results, the proposed model provides an efficient time series prediction functionality. It is also proved that, after effectively extracting comprehensive information and integrating long-term information with static and dynamic information, the accuracy and efficiency of natural gas consumption prediction are greatly promoted. A sensitivity analysis of different modules combination is conducted to emphasise the significance of each module in the hybrid framework. The results indicate that the method coupling all these modules leads to signif-icant improvement in prediction accuracy and robustness. (c) 2022 Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    A hybrid deep learning framework for predicting daily natural gas consumption

  • Popis výsledku anglicky

    Conventional time-series prediction methods for natural gas consumption mainly focus on capturing the temporal feature, neglecting static and dynamic information extraction. The accurate prediction of natural gas consumption possesses of paramount significance in the normal operation of the national economy. This paper proposes a novel method that resolves the deficiency of conventional time series prediction to address this demand via designing a hybrid deep learning framework to extract comprehensive information from gas consumption. The proposed model captures static and dynamic information via encoding gas consumption as matrices and extracts long-term dependency patterns from time series consumption. Subsequently, a customised network is proposed for information fusion. Cases from several different regions in China are studied as examples, and the proposed model is compared with other advanced approaches (such as long short-term memory (LSTM), convolution neural network long short-term memory (CNN-LSTM)). The mean absolute percentage error is reduced by a range of 0.235%-10.303% compared with other models. According to the comparison results, the proposed model provides an efficient time series prediction functionality. It is also proved that, after effectively extracting comprehensive information and integrating long-term information with static and dynamic information, the accuracy and efficiency of natural gas consumption prediction are greatly promoted. A sensitivity analysis of different modules combination is conducted to emphasise the significance of each module in the hybrid framework. The results indicate that the method coupling all these modules leads to signif-icant improvement in prediction accuracy and robustness. (c) 2022 Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    257

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    24

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    000853698300008

  • EID výsledku v databázi Scopus

    2-s2.0-85133929463