A Comparison between Deep Belief Network and LSTM in Chaotic Time Series Forecasting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10249628" target="_blank" >RIV/61989100:27240/21:10249628 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/pdf/10.1145/3490725.3490749" target="_blank" >https://dl.acm.org/doi/pdf/10.1145/3490725.3490749</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3490725.3490749" target="_blank" >10.1145/3490725.3490749</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Comparison between Deep Belief Network and LSTM in Chaotic Time Series Forecasting
Popis výsledku v původním jazyce
The application of deep neural networks in forecasting time series data is increasingly popular, aiming to improve prediction accuracy in this problem. However, as for chaotic time series, a special kind of time series data generated from the deterministic dynamics of a nonlinear system, there are very few research works applying deep neural networks to forecast this kind of time series data. So far, Deep Belief Network (DBN) and Long Short Term Memory (LSTM) are two kinds of deep neural networks used to extract meaningful features from the chaotic time series before forecasting. This article aims to compare the prediction performance of the LSTM model with that of the DBN model on chaotic time series data. Experimental results on six synthetic and real-world datasets in this study show that LSTM brings out better prediction accuracy than DBN in terms of three evaluation criteria. (C) 2021 ACM.
Název v anglickém jazyce
A Comparison between Deep Belief Network and LSTM in Chaotic Time Series Forecasting
Popis výsledku anglicky
The application of deep neural networks in forecasting time series data is increasingly popular, aiming to improve prediction accuracy in this problem. However, as for chaotic time series, a special kind of time series data generated from the deterministic dynamics of a nonlinear system, there are very few research works applying deep neural networks to forecast this kind of time series data. So far, Deep Belief Network (DBN) and Long Short Term Memory (LSTM) are two kinds of deep neural networks used to extract meaningful features from the chaotic time series before forecasting. This article aims to compare the prediction performance of the LSTM model with that of the DBN model on chaotic time series data. Experimental results on six synthetic and real-world datasets in this study show that LSTM brings out better prediction accuracy than DBN in terms of three evaluation criteria. (C) 2021 ACM.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ACM International Conference Proceeding Series 2021
ISBN
978-1-4503-8424-7
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
157-163
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Chang-čou
Datum konání akce
17. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—