A Hybrid Approach for Predicting River Runoff
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096537" target="_blank" >RIV/61989100:27240/15:86096537 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/15:86096537 RIV/61989100:27730/15:86096537
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-21206-7_6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-21206-7_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-21206-7_6" target="_blank" >10.1007/978-3-319-21206-7_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Hybrid Approach for Predicting River Runoff
Popis výsledku v původním jazyce
Time series prediction has attracted attention of many researchers as well as practitioners from different fields and many approaches have been proposed. Traditionally, sliding window technique was employed to transform data first and then some learningmodels such as fuzzy neural networks were exploited for prediction. In order to improve the prediction performance, we propose an approach that combines chaotic theory, recurrent fuzzy neural network (RFNN), and K-means. In the past few decades, fuzzy neural networks have been proven to be a great method for modeling, characterizing and predicting many kinds of nonlinear hydrology time series data such as rainfall, water quality, and river runoff. Chaotic theory is a field of physics and mathematics, and having been used to solve many practical problems emerging from industrial practices. In our proposed approach, chaotic theory is firstly exploited to transformoriginal data to a new kind of data called phase space. Then, a novel hybrid
Název v anglickém jazyce
A Hybrid Approach for Predicting River Runoff
Popis výsledku anglicky
Time series prediction has attracted attention of many researchers as well as practitioners from different fields and many approaches have been proposed. Traditionally, sliding window technique was employed to transform data first and then some learningmodels such as fuzzy neural networks were exploited for prediction. In order to improve the prediction performance, we propose an approach that combines chaotic theory, recurrent fuzzy neural network (RFNN), and K-means. In the past few decades, fuzzy neural networks have been proven to be a great method for modeling, characterizing and predicting many kinds of nonlinear hydrology time series data such as rainfall, water quality, and river runoff. Chaotic theory is a field of physics and mathematics, and having been used to solve many practical problems emerging from industrial practices. In our proposed approach, chaotic theory is firstly exploited to transformoriginal data to a new kind of data called phase space. Then, a novel hybrid
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in intelligent systems and computing. Volume 370
ISBN
978-3-319-21205-0
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
11
Strana od-do
61-71
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Ostrava
Datum konání akce
29. 6. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—