The Assignment Problem and Its Relation to Logistics Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU145892" target="_blank" >RIV/00216305:26210/22:PU145892 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1999-4893/15/10/377" target="_blank" >https://www.mdpi.com/1999-4893/15/10/377</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/a15100377" target="_blank" >10.3390/a15100377</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Assignment Problem and Its Relation to Logistics Problems
Popis výsledku v původním jazyce
The assignment problem is a problem that takes many forms in optimization and graph theory, and by changing some of the constraints or interpreting them differently and adding other constraints, it can be converted to routing, distribution and scheduling problems. Showing such correlations is one of the aims of this paper. Some of the derived problems having exponential time complexity, the question arises of their solvability for larger instances. Instead of the traditional approach based on the use of approximate or stochastic heuristic methods, we focus here on the direct use of mixed integer programming models in the GAMS environment, which is now capable of solving instances much larger than in the past and does not require complex parameter settings or statistical evaluation of the results as in the case of stochastic heuristics because the computational core of software tools, nested in GAMS, is deterministic in nature. The source codes presented may be an aid, because this tool is not yet as well known as the MATLAB Optimisation Toolbox. Benchmarks of the permutation flow shop scheduling problem with informally derived MIP model and the travelling salesman problem are used to present the limits of the software’s applicability.
Název v anglickém jazyce
The Assignment Problem and Its Relation to Logistics Problems
Popis výsledku anglicky
The assignment problem is a problem that takes many forms in optimization and graph theory, and by changing some of the constraints or interpreting them differently and adding other constraints, it can be converted to routing, distribution and scheduling problems. Showing such correlations is one of the aims of this paper. Some of the derived problems having exponential time complexity, the question arises of their solvability for larger instances. Instead of the traditional approach based on the use of approximate or stochastic heuristic methods, we focus here on the direct use of mixed integer programming models in the GAMS environment, which is now capable of solving instances much larger than in the past and does not require complex parameter settings or statistical evaluation of the results as in the case of stochastic heuristics because the computational core of software tools, nested in GAMS, is deterministic in nature. The source codes presented may be an aid, because this tool is not yet as well known as the MATLAB Optimisation Toolbox. Benchmarks of the permutation flow shop scheduling problem with informally derived MIP model and the travelling salesman problem are used to present the limits of the software’s applicability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithms
ISSN
1999-4893
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
27
Strana od-do
1-27
Kód UT WoS článku
000872041000001
EID výsledku v databázi Scopus
2-s2.0-85140395403