Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solution to Inverse Heat Transfer Problems by Means of Soft Computing Approach and Its Comparison to the Well-Established Beck’s Method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU147167" target="_blank" >RIV/00216305:26210/22:PU147167 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.cetjournal.it/index.php/cet/article/view/CET2294072" target="_blank" >https://www.cetjournal.it/index.php/cet/article/view/CET2294072</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3303/CET2294072" target="_blank" >10.3303/CET2294072</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solution to Inverse Heat Transfer Problems by Means of Soft Computing Approach and Its Comparison to the Well-Established Beck’s Method

  • Popis výsledku v původním jazyce

    Many engineering problems involve heat transfer with phase change and their solution often lead to challenging heat transfer problems having no direct solution. A direct solution in this respect means the determination of the thermal behaviour of a system under imposed initial and boundary conditions. The direct solution is not possible in problems where those initial and boundary conditions are unknown. In such cases, an inverse approach has to be used. However, most of the methods available for the solution of inverse heat transfer problems have been applied to heat transfer problems without the phase change. In this respect, soft computing methods seem to be a promising approach. The reason is that soft computing methods build on artificial intelligence, nature-inspired mechanisms and other principles, which enable to effectively find a sufficiently accurate solution to even very complex problems for which hard computing approach fails. In this paper, a computer heat transfer model accounting for the phase change was created and a neural network approach, which also belongs to the soft computing family, was applied to the solution of an inverse heat transfer problem. The identical problem was also solved by means of a well-established (traditional) Beck’s method and the two inverse solutions were compared to each other, including the assessment of the overall computational procedure. The results showed that the approach based on neural networks was efficient and qualitatively led to similar results as in case of the Beck’s method and was computationally more efficient.

  • Název v anglickém jazyce

    Solution to Inverse Heat Transfer Problems by Means of Soft Computing Approach and Its Comparison to the Well-Established Beck’s Method

  • Popis výsledku anglicky

    Many engineering problems involve heat transfer with phase change and their solution often lead to challenging heat transfer problems having no direct solution. A direct solution in this respect means the determination of the thermal behaviour of a system under imposed initial and boundary conditions. The direct solution is not possible in problems where those initial and boundary conditions are unknown. In such cases, an inverse approach has to be used. However, most of the methods available for the solution of inverse heat transfer problems have been applied to heat transfer problems without the phase change. In this respect, soft computing methods seem to be a promising approach. The reason is that soft computing methods build on artificial intelligence, nature-inspired mechanisms and other principles, which enable to effectively find a sufficiently accurate solution to even very complex problems for which hard computing approach fails. In this paper, a computer heat transfer model accounting for the phase change was created and a neural network approach, which also belongs to the soft computing family, was applied to the solution of an inverse heat transfer problem. The identical problem was also solved by means of a well-established (traditional) Beck’s method and the two inverse solutions were compared to each other, including the assessment of the overall computational procedure. The results showed that the approach based on neural networks was efficient and qualitatively led to similar results as in case of the Beck’s method and was computationally more efficient.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Transactions

  • ISSN

    2283-9216

  • e-ISSN

  • Svazek periodika

    94

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    IT - Italská republika

  • Počet stran výsledku

    6

  • Strana od-do

    433-438

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85139189403