Hot Off the Press: Soft computing methods in the solution of an inverse heat transfer problem with phase change
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155642" target="_blank" >RIV/00216305:26210/24:PU155642 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3638530.3664073" target="_blank" >https://dl.acm.org/doi/10.1145/3638530.3664073</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3638530.3664073" target="_blank" >10.1145/3638530.3664073</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hot Off the Press: Soft computing methods in the solution of an inverse heat transfer problem with phase change
Popis výsledku v původním jazyce
This Hot Off the Press paper summarizes our recent work “Soft computing methods in the solution of an inverse heat transfer problem with phase change: A comparative study” published in Engineering Applications of Artificial Intelligence [5]. In the paper, we study inverse heat transfer problems with phase change, where the boundary heat flux is estimated. Such problems are ill-posed and their solution is challenging. Although there were conventional developed for this problem in the past, they are not well-suited for cases including phase change, as these contain strong nonlinearities that bring additional computational difficulties. For such problems, soft computing methods provide a promising approach. Four methods from distinct categories of techniques are applied to this problem and thoroughly compared - the conventional gradientbased method, a fuzzy logic-based method, a population-based meta-heuristic, and a surrogate-assisted method. A reformulation of the problem utilizing dimension reduction and decomposition schemes was developed, bringing extensive computational improvements. The metaheuristic and the surrogate-based methods showed superior performance. Their performance was also rather stable and insensitive to the location of the temperature sensor (the source of data for the inverse estimation). A Zenodo repository with the complete implementation of all considered problems and methods is available
Název v anglickém jazyce
Hot Off the Press: Soft computing methods in the solution of an inverse heat transfer problem with phase change
Popis výsledku anglicky
This Hot Off the Press paper summarizes our recent work “Soft computing methods in the solution of an inverse heat transfer problem with phase change: A comparative study” published in Engineering Applications of Artificial Intelligence [5]. In the paper, we study inverse heat transfer problems with phase change, where the boundary heat flux is estimated. Such problems are ill-posed and their solution is challenging. Although there were conventional developed for this problem in the past, they are not well-suited for cases including phase change, as these contain strong nonlinearities that bring additional computational difficulties. For such problems, soft computing methods provide a promising approach. Four methods from distinct categories of techniques are applied to this problem and thoroughly compared - the conventional gradientbased method, a fuzzy logic-based method, a population-based meta-heuristic, and a surrogate-assisted method. A reformulation of the problem utilizing dimension reduction and decomposition schemes was developed, bringing extensive computational improvements. The metaheuristic and the surrogate-based methods showed superior performance. Their performance was also rather stable and insensitive to the location of the temperature sensor (the source of data for the inverse estimation). A Zenodo repository with the complete implementation of all considered problems and methods is available
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-31173S" target="_blank" >GA22-31173S: Adaptivní soft computing framework pro řešení inverzních úloh přenosu tepla se změnou skupenství</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 Genetic and Evolutionary Computation Conference Companion
ISBN
979-8-4007-0495-6
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
47-48
Název nakladatele
Association for Computing Machinery, Inc
Místo vydání
neuveden
Místo konání akce
Melbourne
Datum konání akce
14. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—