Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automotive cabin vent: comparison of RANS and LES approaches with analytical-empirical equations and their validation with experiments using Hot-Wire Anemometry

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU147702" target="_blank" >RIV/00216305:26210/23:PU147702 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0360132323000999?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360132323000999?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.buildenv.2023.110072" target="_blank" >10.1016/j.buildenv.2023.110072</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automotive cabin vent: comparison of RANS and LES approaches with analytical-empirical equations and their validation with experiments using Hot-Wire Anemometry

  • Popis výsledku v původním jazyce

    The velocity field downstream of an automotive vent is one of the key parameters of passenger comfort. Two theoretical approaches (using analytical-empirical equations, and based on computational fluid dynamics) were applied to calculate the velocity of a jet emerging from a real rectangular benchmark ventilation outlet with adjustable blades. The computational simulations were performed by solving the Reynolds-averaged Navier–Stokes equations (RANS) with the realizable k-ε turbulence model and by Large Eddy Simulation (LES). The results were validated by experimental data acquired by constant temperature anemometry (CTA). The validation comprised a comparison of axial velocity decay, scalar velocity field, angles of jet inclination, and profiles of velocity and turbulence intensity. The study was performed for the isothermal free jet and attached jet, where surrounding walls simulated confinement in a car cabin. The analytical empirical equation by Rajaratnam can be successfully used also to determine the throw of the jet, which is favourable, especially in light of the fact that both computational methods were not very accurate in velocity decay predictions. Root mean square errors for the free jet, and attached jet (expressed for calculations made according to Rajaratnam, and by LES and RANS with respect to the experimentally measured values) were 0.50, 0.85, 0.87 m∙s-1, and 0.52, 0.30, 0.65 m∙s-1, respectively. The LES method was more accurate than RANS in predicting the velocity profiles. The average percentage error of LES, and RANS is 6.3 %, and 17.4 %, respectively however, the calculation time was almost 27 times higher for LES.

  • Název v anglickém jazyce

    Automotive cabin vent: comparison of RANS and LES approaches with analytical-empirical equations and their validation with experiments using Hot-Wire Anemometry

  • Popis výsledku anglicky

    The velocity field downstream of an automotive vent is one of the key parameters of passenger comfort. Two theoretical approaches (using analytical-empirical equations, and based on computational fluid dynamics) were applied to calculate the velocity of a jet emerging from a real rectangular benchmark ventilation outlet with adjustable blades. The computational simulations were performed by solving the Reynolds-averaged Navier–Stokes equations (RANS) with the realizable k-ε turbulence model and by Large Eddy Simulation (LES). The results were validated by experimental data acquired by constant temperature anemometry (CTA). The validation comprised a comparison of axial velocity decay, scalar velocity field, angles of jet inclination, and profiles of velocity and turbulence intensity. The study was performed for the isothermal free jet and attached jet, where surrounding walls simulated confinement in a car cabin. The analytical empirical equation by Rajaratnam can be successfully used also to determine the throw of the jet, which is favourable, especially in light of the fact that both computational methods were not very accurate in velocity decay predictions. Root mean square errors for the free jet, and attached jet (expressed for calculations made according to Rajaratnam, and by LES and RANS with respect to the experimentally measured values) were 0.50, 0.85, 0.87 m∙s-1, and 0.52, 0.30, 0.65 m∙s-1, respectively. The LES method was more accurate than RANS in predicting the velocity profiles. The average percentage error of LES, and RANS is 6.3 %, and 17.4 %, respectively however, the calculation time was almost 27 times higher for LES.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    BUILDING AND ENVIRONMENT

  • ISSN

    0360-1323

  • e-ISSN

    1873-684X

  • Svazek periodika

    233

  • Číslo periodika v rámci svazku

    110072

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Kód UT WoS článku

    000944565900001

  • EID výsledku v databázi Scopus

    2-s2.0-85148324406