Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Prediction and monitoring model for farmland environmental system using soil sensor and neural network algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150311" target="_blank" >RIV/00216305:26210/23:PU150311 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.degruyter.com/document/doi/10.1515/phys-2022-0224/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/phys-2022-0224/html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/phys-2022-0224" target="_blank" >10.1515/phys-2022-0224</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Prediction and monitoring model for farmland environmental system using soil sensor and neural network algorithm

  • Popis výsledku v původním jazyce

    In this study, data fusion algorithm is used to classify the soil species and calibrate the soil humidity sensor, and by using edge computing and a wireless sensor network, farmland environment monitoring system with a two-stage calibration function of frequency domain reflectometer (FDR) is established. Edge computing is used in system nodes, including the saturation value of the soil humidity sensor, the calculated soil hardness, the calculation process of the neural network, and the model of soil classification. A bagged tree is adopted to avoid over-fitting to reduce the prediction variance of the decision tree. A decision tree model is established on each training set, and the C4.5 algorithm is adopted to construct each decision tree. After primary calibration, the root mean squared error (RMSE) between the measured and standard values is reduced to less than 0.0849%. The mean squared error (MSE) and mean absolute error (MAE) are reduced to less than 0.7208 and 0.6929%. The bagged tree model and backpropagation neural network are used to classify the soil and train the dynamic soil dataset. The output of the trained neural network is closer to the actual soil humidity than that of the FDR soil humidity sensor. The MAE, the MSE, and the RMSE decrease by 1.37%, 3.79, and 1.86%. With accurate measurements of soil humidity, this research shows an important guiding significance for improving the utilization efficiency of agricultural water, saving agricultural water, and formulating the crop irrigation process.

  • Název v anglickém jazyce

    Prediction and monitoring model for farmland environmental system using soil sensor and neural network algorithm

  • Popis výsledku anglicky

    In this study, data fusion algorithm is used to classify the soil species and calibrate the soil humidity sensor, and by using edge computing and a wireless sensor network, farmland environment monitoring system with a two-stage calibration function of frequency domain reflectometer (FDR) is established. Edge computing is used in system nodes, including the saturation value of the soil humidity sensor, the calculated soil hardness, the calculation process of the neural network, and the model of soil classification. A bagged tree is adopted to avoid over-fitting to reduce the prediction variance of the decision tree. A decision tree model is established on each training set, and the C4.5 algorithm is adopted to construct each decision tree. After primary calibration, the root mean squared error (RMSE) between the measured and standard values is reduced to less than 0.0849%. The mean squared error (MSE) and mean absolute error (MAE) are reduced to less than 0.7208 and 0.6929%. The bagged tree model and backpropagation neural network are used to classify the soil and train the dynamic soil dataset. The output of the trained neural network is closer to the actual soil humidity than that of the FDR soil humidity sensor. The MAE, the MSE, and the RMSE decrease by 1.37%, 3.79, and 1.86%. With accurate measurements of soil humidity, this research shows an important guiding significance for improving the utilization efficiency of agricultural water, saving agricultural water, and formulating the crop irrigation process.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Laboratoř integrace procesů pro trvalou udržitelnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Open Physics

  • ISSN

    2391-5471

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    17

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    000926250600001

  • EID výsledku v databázi Scopus

    2-s2.0-85147688901