Imputation of Rainfall Data Using Improved Neural Network Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50017983" target="_blank" >RIV/62690094:18450/21:50017983 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-68799-1_28" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-68799-1_28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-68799-1_28" target="_blank" >10.1007/978-3-030-68799-1_28</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Imputation of Rainfall Data Using Improved Neural Network Algorithm
Popis výsledku v původním jazyce
Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we propose a novel input structure for the missing data imputation method. Principal component analysis (PCA) is used to extract the most relevant features from the meteorological data. This paper introduces the combined input of the significant principal components (PCs) and rainfall data from nearest neighbor gauging stations as the input to the estimation of the missing values. Second, the effects of the combination input for infilling the missing rainfall data series were compared using the sine cosine algorithm neural network (SCANN) and feedforward neural network (FFNN). The results showed that SCANN outperformed FFNN imputation in terms of mean absolute error (MAE), root means square error (RMSE) and correlation coefficient (R), with an average accuracy of more than 90%. This study revealed that as the percentage of missingness increased, the precision of both imputation methods reduced. © 2021, Springer Nature Switzerland AG.
Název v anglickém jazyce
Imputation of Rainfall Data Using Improved Neural Network Algorithm
Popis výsledku anglicky
Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we propose a novel input structure for the missing data imputation method. Principal component analysis (PCA) is used to extract the most relevant features from the meteorological data. This paper introduces the combined input of the significant principal components (PCs) and rainfall data from nearest neighbor gauging stations as the input to the estimation of the missing values. Second, the effects of the combination input for infilling the missing rainfall data series were compared using the sine cosine algorithm neural network (SCANN) and feedforward neural network (FFNN). The results showed that SCANN outperformed FFNN imputation in terms of mean absolute error (MAE), root means square error (RMSE) and correlation coefficient (R), with an average accuracy of more than 90%. This study revealed that as the percentage of missingness increased, the precision of both imputation methods reduced. © 2021, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-68798-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
17
Strana od-do
390-406
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Cham
Místo konání akce
On-line
Datum konání akce
10. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—