Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Imputation of Rainfall Data Using Improved Neural Network Algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50017983" target="_blank" >RIV/62690094:18450/21:50017983 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-68799-1_28" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-68799-1_28</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-68799-1_28" target="_blank" >10.1007/978-3-030-68799-1_28</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Imputation of Rainfall Data Using Improved Neural Network Algorithm

  • Popis výsledku v původním jazyce

    Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we propose a novel input structure for the missing data imputation method. Principal component analysis (PCA) is used to extract the most relevant features from the meteorological data. This paper introduces the combined input of the significant principal components (PCs) and rainfall data from nearest neighbor gauging stations as the input to the estimation of the missing values. Second, the effects of the combination input for infilling the missing rainfall data series were compared using the sine cosine algorithm neural network (SCANN) and feedforward neural network (FFNN). The results showed that SCANN outperformed FFNN imputation in terms of mean absolute error (MAE), root means square error (RMSE) and correlation coefficient (R), with an average accuracy of more than 90%. This study revealed that as the percentage of missingness increased, the precision of both imputation methods reduced. © 2021, Springer Nature Switzerland AG.

  • Název v anglickém jazyce

    Imputation of Rainfall Data Using Improved Neural Network Algorithm

  • Popis výsledku anglicky

    Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we propose a novel input structure for the missing data imputation method. Principal component analysis (PCA) is used to extract the most relevant features from the meteorological data. This paper introduces the combined input of the significant principal components (PCs) and rainfall data from nearest neighbor gauging stations as the input to the estimation of the missing values. Second, the effects of the combination input for infilling the missing rainfall data series were compared using the sine cosine algorithm neural network (SCANN) and feedforward neural network (FFNN). The results showed that SCANN outperformed FFNN imputation in terms of mean absolute error (MAE), root means square error (RMSE) and correlation coefficient (R), with an average accuracy of more than 90%. This study revealed that as the percentage of missingness increased, the precision of both imputation methods reduced. © 2021, Springer Nature Switzerland AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    978-3-030-68798-4

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    17

  • Strana od-do

    390-406

  • Název nakladatele

    Springer Science and Business Media Deutschland GmbH

  • Místo vydání

    Cham

  • Místo konání akce

    On-line

  • Datum konání akce

    10. 1. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku