Imputation of rainfall data using the sine cosine function fitting neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018348" target="_blank" >RIV/62690094:18450/21:50018348 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ijimai.org/journal/sites/default/files/2021-08/ijimai6_7_4.pdf" target="_blank" >https://www.ijimai.org/journal/sites/default/files/2021-08/ijimai6_7_4.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.9781/ijimai.2021.08.013" target="_blank" >10.9781/ijimai.2021.08.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Imputation of rainfall data using the sine cosine function fitting neural network
Popis výsledku v původním jazyce
Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we propose a novel pre-processing mechanism for non-precipitation data by using principal component analysis (PCA). Before the imputation, PCA is used to extract the most relevant features from the meteorological data. The final output of the PCA is combined with the rainfall data from the nearest neighbor gauging stations and then used as the input to the neural network for missing data imputation. Second, a sine cosine algorithm is presented to optimize neural network for infilling the missing rainfall data. The proposed sine cosine function fitting neural network (SC-FITNET) was compared with the sine cosine feedforward neural network (SC-FFNN), feedforward neural network (FFNN) and long short-term memory (LSTM) approaches. The results showed that the proposed SC-FITNET outperformed LSTM, SC-FFNN and FFNN imputation in terms of mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (R), with an average accuracy of 90.9%. This study revealed that as the percentage of missingness increased, the precision of the four imputation methods reduced. In addition, this study also revealed that PCA has potential in pre-processing meteorological data into an understandable format for the missing data imputation. © 2021, Universidad Internacional de la Rioja. All rights reserved.
Název v anglickém jazyce
Imputation of rainfall data using the sine cosine function fitting neural network
Popis výsledku anglicky
Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we propose a novel pre-processing mechanism for non-precipitation data by using principal component analysis (PCA). Before the imputation, PCA is used to extract the most relevant features from the meteorological data. The final output of the PCA is combined with the rainfall data from the nearest neighbor gauging stations and then used as the input to the neural network for missing data imputation. Second, a sine cosine algorithm is presented to optimize neural network for infilling the missing rainfall data. The proposed sine cosine function fitting neural network (SC-FITNET) was compared with the sine cosine feedforward neural network (SC-FFNN), feedforward neural network (FFNN) and long short-term memory (LSTM) approaches. The results showed that the proposed SC-FITNET outperformed LSTM, SC-FFNN and FFNN imputation in terms of mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (R), with an average accuracy of 90.9%. This study revealed that as the percentage of missingness increased, the precision of the four imputation methods reduced. In addition, this study also revealed that PCA has potential in pre-processing meteorological data into an understandable format for the missing data imputation. © 2021, Universidad Internacional de la Rioja. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Interactive Multimedia and Artificial Intelligence
ISSN
1989-1660
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
10
Strana od-do
39-48
Kód UT WoS článku
000762258500005
EID výsledku v databázi Scopus
2-s2.0-85115289154