Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Imputation of rainfall data using the sine cosine function fitting neural network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018348" target="_blank" >RIV/62690094:18450/21:50018348 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.ijimai.org/journal/sites/default/files/2021-08/ijimai6_7_4.pdf" target="_blank" >https://www.ijimai.org/journal/sites/default/files/2021-08/ijimai6_7_4.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.9781/ijimai.2021.08.013" target="_blank" >10.9781/ijimai.2021.08.013</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Imputation of rainfall data using the sine cosine function fitting neural network

  • Popis výsledku v původním jazyce

    Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we propose a novel pre-processing mechanism for non-precipitation data by using principal component analysis (PCA). Before the imputation, PCA is used to extract the most relevant features from the meteorological data. The final output of the PCA is combined with the rainfall data from the nearest neighbor gauging stations and then used as the input to the neural network for missing data imputation. Second, a sine cosine algorithm is presented to optimize neural network for infilling the missing rainfall data. The proposed sine cosine function fitting neural network (SC-FITNET) was compared with the sine cosine feedforward neural network (SC-FFNN), feedforward neural network (FFNN) and long short-term memory (LSTM) approaches. The results showed that the proposed SC-FITNET outperformed LSTM, SC-FFNN and FFNN imputation in terms of mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (R), with an average accuracy of 90.9%. This study revealed that as the percentage of missingness increased, the precision of the four imputation methods reduced. In addition, this study also revealed that PCA has potential in pre-processing meteorological data into an understandable format for the missing data imputation. © 2021, Universidad Internacional de la Rioja. All rights reserved.

  • Název v anglickém jazyce

    Imputation of rainfall data using the sine cosine function fitting neural network

  • Popis výsledku anglicky

    Missing rainfall data have reduced the quality of hydrological data analysis because they are the essential input for hydrological modeling. Much research has focused on rainfall data imputation. However, the compatibility of precipitation (rainfall) and non-precipitation (meteorology) as input data has received less attention. First, we propose a novel pre-processing mechanism for non-precipitation data by using principal component analysis (PCA). Before the imputation, PCA is used to extract the most relevant features from the meteorological data. The final output of the PCA is combined with the rainfall data from the nearest neighbor gauging stations and then used as the input to the neural network for missing data imputation. Second, a sine cosine algorithm is presented to optimize neural network for infilling the missing rainfall data. The proposed sine cosine function fitting neural network (SC-FITNET) was compared with the sine cosine feedforward neural network (SC-FFNN), feedforward neural network (FFNN) and long short-term memory (LSTM) approaches. The results showed that the proposed SC-FITNET outperformed LSTM, SC-FFNN and FFNN imputation in terms of mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (R), with an average accuracy of 90.9%. This study revealed that as the percentage of missingness increased, the precision of the four imputation methods reduced. In addition, this study also revealed that PCA has potential in pre-processing meteorological data into an understandable format for the missing data imputation. © 2021, Universidad Internacional de la Rioja. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Interactive Multimedia and Artificial Intelligence

  • ISSN

    1989-1660

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    ES - Španělské království

  • Počet stran výsledku

    10

  • Strana od-do

    39-48

  • Kód UT WoS článku

    000762258500005

  • EID výsledku v databázi Scopus

    2-s2.0-85115289154