DWFH: An improved data-driven deep weather forecasting hybrid model using Transductive Long Short Term Memory (T-LSTM)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50019694" target="_blank" >RIV/62690094:18470/23:50019694 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417422022886?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417422022886?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2022.119270" target="_blank" >10.1016/j.eswa.2022.119270</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DWFH: An improved data-driven deep weather forecasting hybrid model using Transductive Long Short Term Memory (T-LSTM)
Popis výsledku v původním jazyce
Forecasting climate and the development of the environment have been essential in recent days since there has been a drastic change in nature. Weather forecasting plays a significant role in decision-making in traffic management, tourism planning, crop cultivation in agriculture, and warning the people nearby the seaside about the climate situation. It is used to reduce accidents and congestion, mainly based on climate conditions such as rainfall, air condition, and other environmental factors. Accurate weather prediction models are required by meteorological scientists. The previous studies have shown complexity in terms of model building, and computation, and based on theory-driven and rely on time and space. This drawback can be easily solved using the machine learning technique with the time series data. This paper proposes the state-of-art deep learning model Long Short-Term Memory (LSTM) and the Transductive Long Short-Term Memory (T-LSTM) model. The model is evaluated using the evaluation metrics root mean squared error, loss, and mean absolute error. The experiments are carried out on HHWD and Jena Climate datasets. The dataset comprises 14 weather forecasting features including humidity, temperature, etc. The T-LSTM method performs better than other methodologies, producing 98.2% accuracy in forecasting the weather. This proposed hybrid T-LSTM method provides a robust solution for the hydrological variables.
Název v anglickém jazyce
DWFH: An improved data-driven deep weather forecasting hybrid model using Transductive Long Short Term Memory (T-LSTM)
Popis výsledku anglicky
Forecasting climate and the development of the environment have been essential in recent days since there has been a drastic change in nature. Weather forecasting plays a significant role in decision-making in traffic management, tourism planning, crop cultivation in agriculture, and warning the people nearby the seaside about the climate situation. It is used to reduce accidents and congestion, mainly based on climate conditions such as rainfall, air condition, and other environmental factors. Accurate weather prediction models are required by meteorological scientists. The previous studies have shown complexity in terms of model building, and computation, and based on theory-driven and rely on time and space. This drawback can be easily solved using the machine learning technique with the time series data. This paper proposes the state-of-art deep learning model Long Short-Term Memory (LSTM) and the Transductive Long Short-Term Memory (T-LSTM) model. The model is evaluated using the evaluation metrics root mean squared error, loss, and mean absolute error. The experiments are carried out on HHWD and Jena Climate datasets. The dataset comprises 14 weather forecasting features including humidity, temperature, etc. The T-LSTM method performs better than other methodologies, producing 98.2% accuracy in forecasting the weather. This proposed hybrid T-LSTM method provides a robust solution for the hydrological variables.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert systems with applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
213
Číslo periodika v rámci svazku
C
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
"Article Number: 119270"
Kód UT WoS článku
000890656300005
EID výsledku v databázi Scopus
—