Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021380" target="_blank" >RIV/62690094:18470/23:50021380 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025523007077" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025523007077</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2023.119122" target="_blank" >10.1016/j.ins.2023.119122</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks
Popis výsledku v původním jazyce
Energy forecasting plays an important role in effective power grid management. The widespread adoption of emerging technologies and the increased reliance on renewable sources of energy have created a need for a robust and accurate system for energy forecasting. This demand is becoming increasingly relevant due to the ongoing 2022 energy crisis. Modern power systems are very complex with many complicated correlations between various forecasting factors and parameters. Furthermore, renewable energy is often dependent on weather conditions, which complicates the process of forecasting. This work presents a novel artificial intelligence (AI) driven energy forecasting tuned deep learning framework. By formatting predictors as a time series, two variations of recurrent neural networks (RNN)s have been implemented: long -short-term memory (LSTM) and gated recurrent unit (GRU) neural networks. However, both approaches present several hyperparameters that require adequate tuning to attain desirable performance. Therefore, this work also proposes an improved version of a well know swarm intelligence algorithm, the sine cosine algorithm (SCA), tasked with tackling hyperparameter tuning for both approaches. To demonstrate the improvements made, three datasets have been constructed for evaluation from publicly available real-world data that contain relevant solar, wind, and power-grid load parameters alongside weather data. The proposed metaheuristic algorithm has been subjected to a comparative analysis with several contemporary metaheuristic algorithms to showcase the improvements made. The introduced metaheuristic demonstrated the best performance with a mean square error (MSE) rate for solar generation of only 0.0132 with LSTM methods and 0.0134 with GRU. Similar performance was observed for wind power generation forecasting with a MSE of 0.00292 with LSTM and 0.00287. When tackling power grid load forecasting a median MSE of 0.0162 was attained with LSTM and 0.01504 with GRU. Therefore there is great potential for tackling these tasks using the proposed approach. The best-performing models have been analyzed using SHapley Additive exPlanations (SHAP) to determine the factors that have the highest influence on energy generation and demand.
Název v anglickém jazyce
Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks
Popis výsledku anglicky
Energy forecasting plays an important role in effective power grid management. The widespread adoption of emerging technologies and the increased reliance on renewable sources of energy have created a need for a robust and accurate system for energy forecasting. This demand is becoming increasingly relevant due to the ongoing 2022 energy crisis. Modern power systems are very complex with many complicated correlations between various forecasting factors and parameters. Furthermore, renewable energy is often dependent on weather conditions, which complicates the process of forecasting. This work presents a novel artificial intelligence (AI) driven energy forecasting tuned deep learning framework. By formatting predictors as a time series, two variations of recurrent neural networks (RNN)s have been implemented: long -short-term memory (LSTM) and gated recurrent unit (GRU) neural networks. However, both approaches present several hyperparameters that require adequate tuning to attain desirable performance. Therefore, this work also proposes an improved version of a well know swarm intelligence algorithm, the sine cosine algorithm (SCA), tasked with tackling hyperparameter tuning for both approaches. To demonstrate the improvements made, three datasets have been constructed for evaluation from publicly available real-world data that contain relevant solar, wind, and power-grid load parameters alongside weather data. The proposed metaheuristic algorithm has been subjected to a comparative analysis with several contemporary metaheuristic algorithms to showcase the improvements made. The introduced metaheuristic demonstrated the best performance with a mean square error (MSE) rate for solar generation of only 0.0132 with LSTM methods and 0.0134 with GRU. Similar performance was observed for wind power generation forecasting with a MSE of 0.00292 with LSTM and 0.00287. When tackling power grid load forecasting a median MSE of 0.0162 was attained with LSTM and 0.01504 with GRU. Therefore there is great potential for tackling these tasks using the proposed approach. The best-performing models have been analyzed using SHapley Additive exPlanations (SHAP) to determine the factors that have the highest influence on energy generation and demand.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information sciences
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
642
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
"Article number: 119122"
Kód UT WoS článku
001008774100001
EID výsledku v databázi Scopus
2-s2.0-85159212089