Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50021380" target="_blank" >RIV/62690094:18470/23:50021380 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0020025523007077" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025523007077</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ins.2023.119122" target="_blank" >10.1016/j.ins.2023.119122</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks

  • Popis výsledku v původním jazyce

    Energy forecasting plays an important role in effective power grid management. The widespread adoption of emerging technologies and the increased reliance on renewable sources of energy have created a need for a robust and accurate system for energy forecasting. This demand is becoming increasingly relevant due to the ongoing 2022 energy crisis. Modern power systems are very complex with many complicated correlations between various forecasting factors and parameters. Furthermore, renewable energy is often dependent on weather conditions, which complicates the process of forecasting. This work presents a novel artificial intelligence (AI) driven energy forecasting tuned deep learning framework. By formatting predictors as a time series, two variations of recurrent neural networks (RNN)s have been implemented: long -short-term memory (LSTM) and gated recurrent unit (GRU) neural networks. However, both approaches present several hyperparameters that require adequate tuning to attain desirable performance. Therefore, this work also proposes an improved version of a well know swarm intelligence algorithm, the sine cosine algorithm (SCA), tasked with tackling hyperparameter tuning for both approaches. To demonstrate the improvements made, three datasets have been constructed for evaluation from publicly available real-world data that contain relevant solar, wind, and power-grid load parameters alongside weather data. The proposed metaheuristic algorithm has been subjected to a comparative analysis with several contemporary metaheuristic algorithms to showcase the improvements made. The introduced metaheuristic demonstrated the best performance with a mean square error (MSE) rate for solar generation of only 0.0132 with LSTM methods and 0.0134 with GRU. Similar performance was observed for wind power generation forecasting with a MSE of 0.00292 with LSTM and 0.00287. When tackling power grid load forecasting a median MSE of 0.0162 was attained with LSTM and 0.01504 with GRU. Therefore there is great potential for tackling these tasks using the proposed approach. The best-performing models have been analyzed using SHapley Additive exPlanations (SHAP) to determine the factors that have the highest influence on energy generation and demand.

  • Název v anglickém jazyce

    Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks

  • Popis výsledku anglicky

    Energy forecasting plays an important role in effective power grid management. The widespread adoption of emerging technologies and the increased reliance on renewable sources of energy have created a need for a robust and accurate system for energy forecasting. This demand is becoming increasingly relevant due to the ongoing 2022 energy crisis. Modern power systems are very complex with many complicated correlations between various forecasting factors and parameters. Furthermore, renewable energy is often dependent on weather conditions, which complicates the process of forecasting. This work presents a novel artificial intelligence (AI) driven energy forecasting tuned deep learning framework. By formatting predictors as a time series, two variations of recurrent neural networks (RNN)s have been implemented: long -short-term memory (LSTM) and gated recurrent unit (GRU) neural networks. However, both approaches present several hyperparameters that require adequate tuning to attain desirable performance. Therefore, this work also proposes an improved version of a well know swarm intelligence algorithm, the sine cosine algorithm (SCA), tasked with tackling hyperparameter tuning for both approaches. To demonstrate the improvements made, three datasets have been constructed for evaluation from publicly available real-world data that contain relevant solar, wind, and power-grid load parameters alongside weather data. The proposed metaheuristic algorithm has been subjected to a comparative analysis with several contemporary metaheuristic algorithms to showcase the improvements made. The introduced metaheuristic demonstrated the best performance with a mean square error (MSE) rate for solar generation of only 0.0132 with LSTM methods and 0.0134 with GRU. Similar performance was observed for wind power generation forecasting with a MSE of 0.00292 with LSTM and 0.00287. When tackling power grid load forecasting a median MSE of 0.0162 was attained with LSTM and 0.01504 with GRU. Therefore there is great potential for tackling these tasks using the proposed approach. The best-performing models have been analyzed using SHapley Additive exPlanations (SHAP) to determine the factors that have the highest influence on energy generation and demand.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information sciences

  • ISSN

    0020-0255

  • e-ISSN

    1872-6291

  • Svazek periodika

    642

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    28

  • Strana od-do

    "Article number: 119122"

  • Kód UT WoS článku

    001008774100001

  • EID výsledku v databázi Scopus

    2-s2.0-85159212089