An optimised deep learning method for the prediction of dynamic viscosity of MXene-based nanofuid
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00367068" target="_blank" >RIV/68407700:21220/23:00367068 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s40430-023-04284-w" target="_blank" >https://doi.org/10.1007/s40430-023-04284-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40430-023-04284-w" target="_blank" >10.1007/s40430-023-04284-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An optimised deep learning method for the prediction of dynamic viscosity of MXene-based nanofuid
Popis výsledku v původním jazyce
This study designs and develops a new optimised deep learning method to calculate the dynamic viscosity using the temperature and nanofake concentration. Long short-term memory (LSTM) has been a candidate as the most suitable deep learning method with the ability to reach higher accurate results with a defnition of the dropout layers during the training process to prevent the overshoot issue of the networks. In addition, the Bayesian optimisation technique is employed to extract the optimal hyperparameters of the developed LSTM to reach the system’s highest performance in predicting the dynamical viscosity based on temperature and nanofake concentration. The newly proposed method is designed and developed in MATLAB software using 80% and 20% of the dataset for training and testing of the model. The newly proposed optimised LSTM is compared with the recently developed model using multilayer perceptron (MLP) to prove the higher efficiency of our proposed technique. It should be noted that mean-squared error and root-mean-square error using the newly proposed optimised LSTM reduce by 12.56 and 3.54 times compared to the recently developed MLP model. Also, the R-square of the newly proposed optimised LSTM increases by 4.43% compared to the recently developed MLP model.
Název v anglickém jazyce
An optimised deep learning method for the prediction of dynamic viscosity of MXene-based nanofuid
Popis výsledku anglicky
This study designs and develops a new optimised deep learning method to calculate the dynamic viscosity using the temperature and nanofake concentration. Long short-term memory (LSTM) has been a candidate as the most suitable deep learning method with the ability to reach higher accurate results with a defnition of the dropout layers during the training process to prevent the overshoot issue of the networks. In addition, the Bayesian optimisation technique is employed to extract the optimal hyperparameters of the developed LSTM to reach the system’s highest performance in predicting the dynamical viscosity based on temperature and nanofake concentration. The newly proposed method is designed and developed in MATLAB software using 80% and 20% of the dataset for training and testing of the model. The newly proposed optimised LSTM is compared with the recently developed model using multilayer perceptron (MLP) to prove the higher efficiency of our proposed technique. It should be noted that mean-squared error and root-mean-square error using the newly proposed optimised LSTM reduce by 12.56 and 3.54 times compared to the recently developed MLP model. Also, the R-square of the newly proposed optimised LSTM increases by 4.43% compared to the recently developed MLP model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the Brazilian Society of Mechanical Sciences and Engineering
ISSN
1678-5878
e-ISSN
1806-3691
Svazek periodika
2023 (45)
Číslo periodika v rámci svazku
07
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001045098600003
EID výsledku v databázi Scopus
2-s2.0-85165324126