Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep Learning Application to Surface Properties Retrieval Using TIR Measurements: A Fast Forward/Reverse Scheme to Deal with Big Data Analysis from New Satellite Generations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00562844" target="_blank" >RIV/86652079:_____/21:00562844 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2072-4292/13/24/5003" target="_blank" >https://www.mdpi.com/2072-4292/13/24/5003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs13245003" target="_blank" >10.3390/rs13245003</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep Learning Application to Surface Properties Retrieval Using TIR Measurements: A Fast Forward/Reverse Scheme to Deal with Big Data Analysis from New Satellite Generations

  • Popis výsledku v původním jazyce

    In recent years, technology advancement has led to an enormous increase in the amount of satellite data. The availability of huge datasets of remote sensing measurements to be processed, and the increasing need for near-real-time data analysis for operational uses, has fostered the development of fast, efficient-retrieval algorithms. Deep learning techniques were recently applied to satellite data for retrievals of target quantities. Forward models (FM) are a fundamental part of retrieval code development and mission design, as well. Despite this, the application of deep learning techniques to radiative transfer simulations is still underexplored. The DeepLIM project, described in this work, aimed at testing the feasibility of the application of deep learning techniques at the design of the retrieval chain of an upcoming satellite mission. The Land Surface Temperature Mission (LSTM) is a candidate for Sentinel 9 and has, as the main target, the need, for the agricultural community, to improve sustainable productivity. To do this, the mission will carry a thermal infrared sensor to retrieve land-surface temperature and evapotranspiration rate. The LSTM land-surface temperature retrieval chain is used as a benchmark to test the deep learning performances when applied to Earth observation studies. Starting from aircraft campaign data and state-of-the-art FM simulations with the DART model, deep learning techniques are used to generate new spectral features. Their statistical behavior is compared to the original technique to test the generation performances. Then, the high spectral resolution simulations are convolved with LSTM spectral response functions to obtain the radiance in the LSTM spectral channels. Simulated observations are analyzed using two state-of-the-art retrieval codes and deep learning-based algorithms. The performances of deep learning algorithms show promising results for both the production of simulated spectra and target parameters retrievals, one of the main advances being the reduction in computational costs.

  • Název v anglickém jazyce

    Deep Learning Application to Surface Properties Retrieval Using TIR Measurements: A Fast Forward/Reverse Scheme to Deal with Big Data Analysis from New Satellite Generations

  • Popis výsledku anglicky

    In recent years, technology advancement has led to an enormous increase in the amount of satellite data. The availability of huge datasets of remote sensing measurements to be processed, and the increasing need for near-real-time data analysis for operational uses, has fostered the development of fast, efficient-retrieval algorithms. Deep learning techniques were recently applied to satellite data for retrievals of target quantities. Forward models (FM) are a fundamental part of retrieval code development and mission design, as well. Despite this, the application of deep learning techniques to radiative transfer simulations is still underexplored. The DeepLIM project, described in this work, aimed at testing the feasibility of the application of deep learning techniques at the design of the retrieval chain of an upcoming satellite mission. The Land Surface Temperature Mission (LSTM) is a candidate for Sentinel 9 and has, as the main target, the need, for the agricultural community, to improve sustainable productivity. To do this, the mission will carry a thermal infrared sensor to retrieve land-surface temperature and evapotranspiration rate. The LSTM land-surface temperature retrieval chain is used as a benchmark to test the deep learning performances when applied to Earth observation studies. Starting from aircraft campaign data and state-of-the-art FM simulations with the DART model, deep learning techniques are used to generate new spectral features. Their statistical behavior is compared to the original technique to test the generation performances. Then, the high spectral resolution simulations are convolved with LSTM spectral response functions to obtain the radiance in the LSTM spectral channels. Simulated observations are analyzed using two state-of-the-art retrieval codes and deep learning-based algorithms. The performances of deep learning algorithms show promising results for both the production of simulated spectra and target parameters retrievals, one of the main advances being the reduction in computational costs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    24

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    21

  • Strana od-do

    5003

  • Kód UT WoS článku

    000737208900001

  • EID výsledku v databázi Scopus

    2-s2.0-85121422717