Active Learning for LSTM-autoencoder-based Anomaly Detection in Electrocardiogram Readings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00536614" target="_blank" >RIV/67985807:_____/20:00536614 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/20:00343031
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2660/ialatecml_shortpaper1.pdf" target="_blank" >http://ceur-ws.org/Vol-2660/ialatecml_shortpaper1.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Active Learning for LSTM-autoencoder-based Anomaly Detection in Electrocardiogram Readings
Popis výsledku v původním jazyce
Recently, the amount of generated time series data has been increasing rapidly in many areas such as healthcare, security, meteorology and others. However, it is very rare that those time series are annotated. For this reason, unsupervised machine learning techniques such as anomaly detection are often used with such data. There exist many unsupervised algorithms for anomaly detection ranging from simple statistical techniques such as moving average or ARIMA till complex deep learning algorithms such as LSTM-autoencoder. For a nice overview of the recent algorithms we refer to read. Difficulties with the unsupervised approach are: defining an anomaly score to correctly represent how anomalous is the time series, and setting a threshold for that score to distinguish between normal and anomaly data. Supervised anomaly detection, on the other hand, needs an expensive involvement of a human expert. An additional problem with supervised anomaly detection is usually the occurrence of very low ratio of anomalies, yielding highly imbalanced data. In this extended abstract, we propose an active learning extension for an anomaly detector based on a LSTM-autoencoder. It performs active learning using various classification algorithms and addresses data imbalance with oversampling and under-sampling techniques. We are currently testing it on the ECG5000 dataset from the UCR time series classification archive.n
Název v anglickém jazyce
Active Learning for LSTM-autoencoder-based Anomaly Detection in Electrocardiogram Readings
Popis výsledku anglicky
Recently, the amount of generated time series data has been increasing rapidly in many areas such as healthcare, security, meteorology and others. However, it is very rare that those time series are annotated. For this reason, unsupervised machine learning techniques such as anomaly detection are often used with such data. There exist many unsupervised algorithms for anomaly detection ranging from simple statistical techniques such as moving average or ARIMA till complex deep learning algorithms such as LSTM-autoencoder. For a nice overview of the recent algorithms we refer to read. Difficulties with the unsupervised approach are: defining an anomaly score to correctly represent how anomalous is the time series, and setting a threshold for that score to distinguish between normal and anomaly data. Supervised anomaly detection, on the other hand, needs an expensive involvement of a human expert. An additional problem with supervised anomaly detection is usually the occurrence of very low ratio of anomalies, yielding highly imbalanced data. In this extended abstract, we propose an active learning extension for an anomaly detector based on a LSTM-autoencoder. It performs active learning using various classification algorithms and addresses data imbalance with oversampling and under-sampling techniques. We are currently testing it on the ECG5000 dataset from the UCR time series classification archive.n
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Workshop on Interactive Adaptive Learning
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
6
Strana od-do
72-77
Název nakladatele
Technical University & CreateSpace Independent Publishing
Místo vydání
Aachen
Místo konání akce
Virtual Ghent
Datum konání akce
14. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—