Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Active Learning for LSTM-autoencoder-based Anomaly Detection in Electrocardiogram Readings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00536614" target="_blank" >RIV/67985807:_____/20:00536614 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/20:00343031

  • Výsledek na webu

    <a href="http://ceur-ws.org/Vol-2660/ialatecml_shortpaper1.pdf" target="_blank" >http://ceur-ws.org/Vol-2660/ialatecml_shortpaper1.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Active Learning for LSTM-autoencoder-based Anomaly Detection in Electrocardiogram Readings

  • Popis výsledku v původním jazyce

    Recently, the amount of generated time series data has been increasing rapidly in many areas such as healthcare, security, meteorology and others. However, it is very rare that those time series are annotated. For this reason, unsupervised machine learning techniques such as anomaly detection are often used with such data. There exist many unsupervised algorithms for anomaly detection ranging from simple statistical techniques such as moving average or ARIMA till complex deep learning algorithms such as LSTM-autoencoder. For a nice overview of the recent algorithms we refer to read. Difficulties with the unsupervised approach are: defining an anomaly score to correctly represent how anomalous is the time series, and setting a threshold for that score to distinguish between normal and anomaly data. Supervised anomaly detection, on the other hand, needs an expensive involvement of a human expert. An additional problem with supervised anomaly detection is usually the occurrence of very low ratio of anomalies, yielding highly imbalanced data. In this extended abstract, we propose an active learning extension for an anomaly detector based on a LSTM-autoencoder. It performs active learning using various classification algorithms and addresses data imbalance with oversampling and under-sampling techniques. We are currently testing it on the ECG5000 dataset from the UCR time series classification archive.n

  • Název v anglickém jazyce

    Active Learning for LSTM-autoencoder-based Anomaly Detection in Electrocardiogram Readings

  • Popis výsledku anglicky

    Recently, the amount of generated time series data has been increasing rapidly in many areas such as healthcare, security, meteorology and others. However, it is very rare that those time series are annotated. For this reason, unsupervised machine learning techniques such as anomaly detection are often used with such data. There exist many unsupervised algorithms for anomaly detection ranging from simple statistical techniques such as moving average or ARIMA till complex deep learning algorithms such as LSTM-autoencoder. For a nice overview of the recent algorithms we refer to read. Difficulties with the unsupervised approach are: defining an anomaly score to correctly represent how anomalous is the time series, and setting a threshold for that score to distinguish between normal and anomaly data. Supervised anomaly detection, on the other hand, needs an expensive involvement of a human expert. An additional problem with supervised anomaly detection is usually the occurrence of very low ratio of anomalies, yielding highly imbalanced data. In this extended abstract, we propose an active learning extension for an anomaly detector based on a LSTM-autoencoder. It performs active learning using various classification algorithms and addresses data imbalance with oversampling and under-sampling techniques. We are currently testing it on the ECG5000 dataset from the UCR time series classification archive.n

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Workshop on Interactive Adaptive Learning

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    72-77

  • Název nakladatele

    Technical University & CreateSpace Independent Publishing

  • Místo vydání

    Aachen

  • Místo konání akce

    Virtual Ghent

  • Datum konání akce

    14. 9. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku