Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Representation of PE Files using LSTM Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00347174" target="_blank" >RIV/68407700:21240/21:00347174 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.insticc.org/node/TechnicalProgram/icissp/2021/presentationDetails/102571" target="_blank" >https://www.insticc.org/node/TechnicalProgram/icissp/2021/presentationDetails/102571</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0010257105160525" target="_blank" >10.5220/0010257105160525</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Representation of PE Files using LSTM Networks

  • Popis výsledku v původním jazyce

    An ever-growing number of malicious attacks on IT infrastructures calls for new and efficient methods of protection. In this paper, we focus on malware detection using the Long Short-Term Memory (LSTM) as a preprocessing tool to increase the classification accuracy of machine learning algorithms. To represent the malicious and benign programs, we used features extracted from files in the PE file format. We created a large dataset on which we performed common feature preparation and feature selection techniques. With the help of various LSTM and Bidirectional LSTM (BLSTM) network architectures, we further transformed the collected features and trained other supervised ML algorithms on both transformed and vanilla datasets. Transformation by deep (4 hidden layers) versions of LSTM and BLSTM networks performed well and decreased the error rate of several state-of-the-art machine learning algorithms significantly. For each machine learning algorithm considered in our experiments, the LSTM-based transformation of the feature space results in decreasing the corresponding error rate by more than 58.60 %, in comparison when the feature space was not transformed using LSTM network.

  • Název v anglickém jazyce

    Representation of PE Files using LSTM Networks

  • Popis výsledku anglicky

    An ever-growing number of malicious attacks on IT infrastructures calls for new and efficient methods of protection. In this paper, we focus on malware detection using the Long Short-Term Memory (LSTM) as a preprocessing tool to increase the classification accuracy of machine learning algorithms. To represent the malicious and benign programs, we used features extracted from files in the PE file format. We created a large dataset on which we performed common feature preparation and feature selection techniques. With the help of various LSTM and Bidirectional LSTM (BLSTM) network architectures, we further transformed the collected features and trained other supervised ML algorithms on both transformed and vanilla datasets. Transformation by deep (4 hidden layers) versions of LSTM and BLSTM networks performed well and decreased the error rate of several state-of-the-art machine learning algorithms significantly. For each machine learning algorithm considered in our experiments, the LSTM-based transformation of the feature space results in decreasing the corresponding error rate by more than 58.60 %, in comparison when the feature space was not transformed using LSTM network.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 7th International Conference on Information Systems Security and Privacy

  • ISBN

    978-989-758-491-6

  • ISSN

    2184-4356

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    516-525

  • Název nakladatele

    SciTePress

  • Místo vydání

    Madeira

  • Místo konání akce

    Vídeň / Virtuální

  • Datum konání akce

    11. 2. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000664076200052