Representation of PE Files using LSTM Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00347174" target="_blank" >RIV/68407700:21240/21:00347174 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.insticc.org/node/TechnicalProgram/icissp/2021/presentationDetails/102571" target="_blank" >https://www.insticc.org/node/TechnicalProgram/icissp/2021/presentationDetails/102571</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010257105160525" target="_blank" >10.5220/0010257105160525</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Representation of PE Files using LSTM Networks
Popis výsledku v původním jazyce
An ever-growing number of malicious attacks on IT infrastructures calls for new and efficient methods of protection. In this paper, we focus on malware detection using the Long Short-Term Memory (LSTM) as a preprocessing tool to increase the classification accuracy of machine learning algorithms. To represent the malicious and benign programs, we used features extracted from files in the PE file format. We created a large dataset on which we performed common feature preparation and feature selection techniques. With the help of various LSTM and Bidirectional LSTM (BLSTM) network architectures, we further transformed the collected features and trained other supervised ML algorithms on both transformed and vanilla datasets. Transformation by deep (4 hidden layers) versions of LSTM and BLSTM networks performed well and decreased the error rate of several state-of-the-art machine learning algorithms significantly. For each machine learning algorithm considered in our experiments, the LSTM-based transformation of the feature space results in decreasing the corresponding error rate by more than 58.60 %, in comparison when the feature space was not transformed using LSTM network.
Název v anglickém jazyce
Representation of PE Files using LSTM Networks
Popis výsledku anglicky
An ever-growing number of malicious attacks on IT infrastructures calls for new and efficient methods of protection. In this paper, we focus on malware detection using the Long Short-Term Memory (LSTM) as a preprocessing tool to increase the classification accuracy of machine learning algorithms. To represent the malicious and benign programs, we used features extracted from files in the PE file format. We created a large dataset on which we performed common feature preparation and feature selection techniques. With the help of various LSTM and Bidirectional LSTM (BLSTM) network architectures, we further transformed the collected features and trained other supervised ML algorithms on both transformed and vanilla datasets. Transformation by deep (4 hidden layers) versions of LSTM and BLSTM networks performed well and decreased the error rate of several state-of-the-art machine learning algorithms significantly. For each machine learning algorithm considered in our experiments, the LSTM-based transformation of the feature space results in decreasing the corresponding error rate by more than 58.60 %, in comparison when the feature space was not transformed using LSTM network.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 7th International Conference on Information Systems Security and Privacy
ISBN
978-989-758-491-6
ISSN
2184-4356
e-ISSN
—
Počet stran výsledku
10
Strana od-do
516-525
Název nakladatele
SciTePress
Místo vydání
Madeira
Místo konání akce
Vídeň / Virtuální
Datum konání akce
11. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000664076200052