Augmenting Internet of Medical Things Security: Deep Ensemble Integration and Methodological Fusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021837" target="_blank" >RIV/62690094:18450/24:50021837 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.techscience.com/CMES/v141n3/58509" target="_blank" >https://www.techscience.com/CMES/v141n3/58509</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32604/cmes.2024.056308" target="_blank" >10.32604/cmes.2024.056308</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Augmenting Internet of Medical Things Security: Deep Ensemble Integration and Methodological Fusion
Popis výsledku v původním jazyce
When it comes to smart healthcare business systems, network-based intrusion detection systems are crucial for protecting the system and its networks from malicious network assaults. To protect IoMT devices and networks in healthcare and medical settings, our proposed model serves as a powerful tool for monitoring IoMT networks. This study presents a robust methodology for intrusion detection in Internet of Medical Things (IoMT) environments, integrating data augmentation, feature selection, and ensemble learning to effectively handle IoMT data complexity. Following rigorous preprocessing, including feature extraction, correlation removal, and Recursive Feature Elimination (RFE), selected features are standardized and reshaped for deep learning models. Augmentation using the BAT algorithm enhances dataset variability. Three deep learning models, Transformer-based neural networks, self-attention Deep Convolutional Neural Networks (DCNNs), and Long Short-Term Memory (LSTM) networks, are trained to capture diverse data aspects. Their predictions form a meta-feature set for a subsequent meta-learner, which combines model strengths. Conventional classifiers validate meta-learner features for broad algorithm suitability. This comprehensive method demonstrates high accuracy and robustness in IoMT intrusion detection. Evaluations were conducted using two datasets: the publicly available WUSTL-EHMS-2020 dataset, which contains two distinct categories, and the CICIoMT2024 dataset, encompassing sixteen categories. Experimental results showcase the method’s exceptional performance, achieving optimal scores of 100% on the WUSTL-EHMS-2020 dataset and 99% on the CICIoMT2024. Copyright © 2024 The Authors. Published by Tech Science Press.
Název v anglickém jazyce
Augmenting Internet of Medical Things Security: Deep Ensemble Integration and Methodological Fusion
Popis výsledku anglicky
When it comes to smart healthcare business systems, network-based intrusion detection systems are crucial for protecting the system and its networks from malicious network assaults. To protect IoMT devices and networks in healthcare and medical settings, our proposed model serves as a powerful tool for monitoring IoMT networks. This study presents a robust methodology for intrusion detection in Internet of Medical Things (IoMT) environments, integrating data augmentation, feature selection, and ensemble learning to effectively handle IoMT data complexity. Following rigorous preprocessing, including feature extraction, correlation removal, and Recursive Feature Elimination (RFE), selected features are standardized and reshaped for deep learning models. Augmentation using the BAT algorithm enhances dataset variability. Three deep learning models, Transformer-based neural networks, self-attention Deep Convolutional Neural Networks (DCNNs), and Long Short-Term Memory (LSTM) networks, are trained to capture diverse data aspects. Their predictions form a meta-feature set for a subsequent meta-learner, which combines model strengths. Conventional classifiers validate meta-learner features for broad algorithm suitability. This comprehensive method demonstrates high accuracy and robustness in IoMT intrusion detection. Evaluations were conducted using two datasets: the publicly available WUSTL-EHMS-2020 dataset, which contains two distinct categories, and the CICIoMT2024 dataset, encompassing sixteen categories. Experimental results showcase the method’s exceptional performance, achieving optimal scores of 100% on the WUSTL-EHMS-2020 dataset and 99% on the CICIoMT2024. Copyright © 2024 The Authors. Published by Tech Science Press.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Modeling in Engineering & Sciences
ISSN
1526-1492
e-ISSN
1526-1506
Svazek periodika
141
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
39
Strana od-do
2185-2223
Kód UT WoS článku
001363301400013
EID výsledku v databázi Scopus
2-s2.0-85208240022