Improved Dragonfly Optimizer for Intrusion Detection Using Deep Clustering CNN-PSO Classifier
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50018604" target="_blank" >RIV/62690094:18470/22:50018604 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.techscience.com/cmc/v70n3/44980" target="_blank" >https://www.techscience.com/cmc/v70n3/44980</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32604/cmc.2022.020769" target="_blank" >10.32604/cmc.2022.020769</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved Dragonfly Optimizer for Intrusion Detection Using Deep Clustering CNN-PSO Classifier
Popis výsledku v původním jazyce
With the rapid growth of internet based services and the data generated on these services are attracted by the attackers to intrude the networking services and information. Based on the characteristics of these intruders, many researchers attempted to aim to detect the intrusion with the help of automating process. Since, the large volume of data is generated and transferred through network, the security and performance are remained an issue. IDS (Intrusion Detection System) was developed to detect and prevent the intruders and secure the network systems. The performance and loss are still an issue because of the features space grows while detecting the intruders. In this paper, deep clustering based CNN have been used to detect the intruders with the help of Meta heuristic algorithms for feature selection and preprocessing. The proposed system includes three phases such as preprocessing, feature selection and classification. In the first phase, KDD dataset is preprocessed by using Binning normalization and Eigen-PCA based discretization method. In second phase, feature selection is performed by using Information Gain based Dragonfly Optimizer (IGDFO). Finally, Deep clustering based Convolutional Neural Network (CCNN) classifier optimized with Particle Swarm Optimization (PSO) identifies intrusion attacks efficiently. The clustering loss and network loss can be reduced with the optimization algorithm. We evaluate the proposed IDS model with the NSL-KDD dataset in terms of evaluation metrics. The experimental results show that proposed system achieves better performance compared with the existing system in terms of accuracy, precision, recall, f-measure and false detection rate.
Název v anglickém jazyce
Improved Dragonfly Optimizer for Intrusion Detection Using Deep Clustering CNN-PSO Classifier
Popis výsledku anglicky
With the rapid growth of internet based services and the data generated on these services are attracted by the attackers to intrude the networking services and information. Based on the characteristics of these intruders, many researchers attempted to aim to detect the intrusion with the help of automating process. Since, the large volume of data is generated and transferred through network, the security and performance are remained an issue. IDS (Intrusion Detection System) was developed to detect and prevent the intruders and secure the network systems. The performance and loss are still an issue because of the features space grows while detecting the intruders. In this paper, deep clustering based CNN have been used to detect the intruders with the help of Meta heuristic algorithms for feature selection and preprocessing. The proposed system includes three phases such as preprocessing, feature selection and classification. In the first phase, KDD dataset is preprocessed by using Binning normalization and Eigen-PCA based discretization method. In second phase, feature selection is performed by using Information Gain based Dragonfly Optimizer (IGDFO). Finally, Deep clustering based Convolutional Neural Network (CCNN) classifier optimized with Particle Swarm Optimization (PSO) identifies intrusion attacks efficiently. The clustering loss and network loss can be reduced with the optimization algorithm. We evaluate the proposed IDS model with the NSL-KDD dataset in terms of evaluation metrics. The experimental results show that proposed system achieves better performance compared with the existing system in terms of accuracy, precision, recall, f-measure and false detection rate.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CMC-Computers, Materials & Continua
ISSN
1546-2218
e-ISSN
1546-2226
Svazek periodika
70
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
5949-5965
Kód UT WoS článku
000707364500018
EID výsledku v databázi Scopus
—