Co-FQL: Anomaly detection using cooperative fuzzy Q-learning in network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86099389" target="_blank" >RIV/61989100:27240/15:86099389 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/15:86099389
Výsledek na webu
<a href="http://dx.doi.org/10.3233/IFS-141419" target="_blank" >http://dx.doi.org/10.3233/IFS-141419</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/IFS-141419" target="_blank" >10.3233/IFS-141419</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Co-FQL: Anomaly detection using cooperative fuzzy Q-learning in network
Popis výsledku v původním jazyce
Wireless networks are increasingly overwhelmed by Distributed Denial of Service (DDoS) attacks by generating flooding packets that exhaust critical computing and communication resources of a victim's mobile device within a very short period of time. This must be protected. Effective detection of DDoS attacks requires an adaptive learning classifier, with less computational complexity, and an accurate decision making to stunt such attacks. We propose a distributed intrusion detection system called Cooperative IDS to protect wireless nodes within the network and target nodes from DDoS attacks by using a Cooperative Fuzzy Q-learning (Co-FQL) optimization algorithmic technique to identify the attack patterns and take appropriate countermeasures. The Co-FQL algorithm was trained and tested to establish its performance by generating attacks from the NSL-KDD and "CAIDA DDoS Attack 2007" datasets during the simulation experiments. Experimental results show that the proposed Co-FQL IDS has a 90.58% higher accuracy of detection rate than Fuzzy Logic Controller or Q-learning algorithm or Fuzzy Q-learning alone. (C) 2015 - IOS Press and the authors. All rights reserved.
Název v anglickém jazyce
Co-FQL: Anomaly detection using cooperative fuzzy Q-learning in network
Popis výsledku anglicky
Wireless networks are increasingly overwhelmed by Distributed Denial of Service (DDoS) attacks by generating flooding packets that exhaust critical computing and communication resources of a victim's mobile device within a very short period of time. This must be protected. Effective detection of DDoS attacks requires an adaptive learning classifier, with less computational complexity, and an accurate decision making to stunt such attacks. We propose a distributed intrusion detection system called Cooperative IDS to protect wireless nodes within the network and target nodes from DDoS attacks by using a Cooperative Fuzzy Q-learning (Co-FQL) optimization algorithmic technique to identify the attack patterns and take appropriate countermeasures. The Co-FQL algorithm was trained and tested to establish its performance by generating attacks from the NSL-KDD and "CAIDA DDoS Attack 2007" datasets during the simulation experiments. Experimental results show that the proposed Co-FQL IDS has a 90.58% higher accuracy of detection rate than Fuzzy Logic Controller or Q-learning algorithm or Fuzzy Q-learning alone. (C) 2015 - IOS Press and the authors. All rights reserved.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Intelligent and Fuzzy Systems
ISSN
1064-1246
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
28
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1345-1357
Kód UT WoS článku
000349834500034
EID výsledku v databázi Scopus
—