Cooperative game theoretic approach using fuzzy Q-learning for detecting and preventing intrusions in wireless sensor networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092820" target="_blank" >RIV/61989100:27240/14:86092820 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.engappai.2014.02.001" target="_blank" >http://dx.doi.org/10.1016/j.engappai.2014.02.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2014.02.001" target="_blank" >10.1016/j.engappai.2014.02.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cooperative game theoretic approach using fuzzy Q-learning for detecting and preventing intrusions in wireless sensor networks
Popis výsledku v původním jazyce
Owing to the distributed nature of denial-of-service attacks, it is tremendously challenging to detect such malicious behavior using traditional intrusion detection systems in Wireless Sensor Networks (WSNs). In the current paper, a game theoretic methodis introduced, namely cooperative Game-based Fuzzy Q-learning (G-FQL). G-FQL adopts a combination of both the game theoretic approach and the fuzzy Q-learning algorithm in WSNs. It is a three-player strategy game consisting of sink nodes, a base station, and an attacker. The game performs at any time a victim node in the network receives a flooding packet as a DDoS attack beyond a specific alarm event threshold in WSN. The proposed model implements cooperative defense counter-attack scenarios for the sink node and the base station to operate as rational decision-maker players through a game theory strategy. In order to evaluate the performance of the proposed model, the Low Energy Adaptive Clustering Hierarchy (LEACH) was simulated usi
Název v anglickém jazyce
Cooperative game theoretic approach using fuzzy Q-learning for detecting and preventing intrusions in wireless sensor networks
Popis výsledku anglicky
Owing to the distributed nature of denial-of-service attacks, it is tremendously challenging to detect such malicious behavior using traditional intrusion detection systems in Wireless Sensor Networks (WSNs). In the current paper, a game theoretic methodis introduced, namely cooperative Game-based Fuzzy Q-learning (G-FQL). G-FQL adopts a combination of both the game theoretic approach and the fuzzy Q-learning algorithm in WSNs. It is a three-player strategy game consisting of sink nodes, a base station, and an attacker. The game performs at any time a victim node in the network receives a flooding packet as a DDoS attack beyond a specific alarm event threshold in WSN. The proposed model implements cooperative defense counter-attack scenarios for the sink node and the base station to operate as rational decision-maker players through a game theory strategy. In order to evaluate the performance of the proposed model, the Low Energy Adaptive Clustering Hierarchy (LEACH) was simulated usi
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
ISSN
0952-1976
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
Jun
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
228-241
Kód UT WoS článku
000336953900020
EID výsledku v databázi Scopus
—