Secure routing with multi-watchdog construction using deep particle convolutional model for IoT based 5G wireless sensor networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43905000" target="_blank" >RIV/60076658:12310/22:43905000 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S014036642200041X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S014036642200041X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comcom.2022.02.004" target="_blank" >10.1016/j.comcom.2022.02.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Secure routing with multi-watchdog construction using deep particle convolutional model for IoT based 5G wireless sensor networks
Popis výsledku v původním jazyce
Fifth Generation (5G) security principles are widely expected with effective cryptography models, information security models, Machine Learning (ML) based Intrusion Detection systems (IDS) for Internet of Things (IoT) based Wireless Sensor Networks (WSN). However, the current security models are insufficient against the dynamic network nature of WSNs. On this scope, the proposed system develops Deep Convolutional Neural Network (DCNN) and Distributed Particle Filtering Evaluation Scheme (DPFES) for constructing a secure and cooperative multi-watchdog system. The proposed Deep Learning (DL) based dynamic multi-watchdog system protects each sensor node by monitoring the node transmission. In addition, the proposed work encompasses secure data-centric and node-centric evaluation procedures that are required for expanding the secure medium of 5G-based IoT-WSN networks. The DL-based network evaluation procedures drive the entire network to build a secure multi-watchdog system that enables on-demand active watchdog IDS agents among dense IoT-WSN. Notably, the proposed work contains a system dynamics model, cooperative watchdog model, Dual Line Minimum Connected Dominating Set (DL-MCDS), and DL-based event analysis procedures. Based on technical aspects, the proposed system is motivated to implement DPFES to analyze network events using particle filtering frameworks to build a secure 5G environment. The system is implemented and results are compared with related works. The performance of the proposed cooperative multi-watchdog system delivers 10% and 15% of better results than other techniques.
Název v anglickém jazyce
Secure routing with multi-watchdog construction using deep particle convolutional model for IoT based 5G wireless sensor networks
Popis výsledku anglicky
Fifth Generation (5G) security principles are widely expected with effective cryptography models, information security models, Machine Learning (ML) based Intrusion Detection systems (IDS) for Internet of Things (IoT) based Wireless Sensor Networks (WSN). However, the current security models are insufficient against the dynamic network nature of WSNs. On this scope, the proposed system develops Deep Convolutional Neural Network (DCNN) and Distributed Particle Filtering Evaluation Scheme (DPFES) for constructing a secure and cooperative multi-watchdog system. The proposed Deep Learning (DL) based dynamic multi-watchdog system protects each sensor node by monitoring the node transmission. In addition, the proposed work encompasses secure data-centric and node-centric evaluation procedures that are required for expanding the secure medium of 5G-based IoT-WSN networks. The DL-based network evaluation procedures drive the entire network to build a secure multi-watchdog system that enables on-demand active watchdog IDS agents among dense IoT-WSN. Notably, the proposed work contains a system dynamics model, cooperative watchdog model, Dual Line Minimum Connected Dominating Set (DL-MCDS), and DL-based event analysis procedures. Based on technical aspects, the proposed system is motivated to implement DPFES to analyze network events using particle filtering frameworks to build a secure 5G environment. The system is implemented and results are compared with related works. The performance of the proposed cooperative multi-watchdog system delivers 10% and 15% of better results than other techniques.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Communication
ISSN
0140-3664
e-ISSN
1873-703X
Svazek periodika
187
Číslo periodika v rámci svazku
APR 1 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
71-82
Kód UT WoS článku
000817094300006
EID výsledku v databázi Scopus
2-s2.0-85124704537