Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interpretability of Machine Learning-Based Results of Malware Detection Using a Set of Rules

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00358963" target="_blank" >RIV/68407700:21240/22:00358963 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-97087-1_5" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-97087-1_5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-97087-1_5" target="_blank" >10.1007/978-3-030-97087-1_5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interpretability of Machine Learning-Based Results of Malware Detection Using a Set of Rules

  • Popis výsledku v původním jazyce

    Machine learning plays an indispensable role in modern malware detection; it provides malware researchers with quick and reliable results. On the other hand, the results can be hard to understand as to why a model classified a given file as malicious or benign. This paper focuses on the interpretability of machine learning models’ results using decision lists generated by two rule-based classifiers, I-REP and RIPPER. We use the EMBER dataset, which contains features extracted through static analysis from Portable Executable files, to train various machine learning models. We extract decision lists from the machine learning models’ results using our implementation of I-REP and RIPPER. By taking into account accuracies, true positive and false positive rates of the decision lists, we reason whether the generated decision lists make a good representation of the results. To comprehend the interpretability of the machine learning models, we define Human Most Understandable Model and Interpretability Entropy. This allows us to measure and compare the interpretability among the models. The most interpretable machine learning model by RIPPER was Gaussian Naïve Bayes. Results show that RIPPER is relatively successful at interpreting other machine learning models; however, it needs some improvements to increase true positive rate.

  • Název v anglickém jazyce

    Interpretability of Machine Learning-Based Results of Malware Detection Using a Set of Rules

  • Popis výsledku anglicky

    Machine learning plays an indispensable role in modern malware detection; it provides malware researchers with quick and reliable results. On the other hand, the results can be hard to understand as to why a model classified a given file as malicious or benign. This paper focuses on the interpretability of machine learning models’ results using decision lists generated by two rule-based classifiers, I-REP and RIPPER. We use the EMBER dataset, which contains features extracted through static analysis from Portable Executable files, to train various machine learning models. We extract decision lists from the machine learning models’ results using our implementation of I-REP and RIPPER. By taking into account accuracies, true positive and false positive rates of the decision lists, we reason whether the generated decision lists make a good representation of the results. To comprehend the interpretability of the machine learning models, we define Human Most Understandable Model and Interpretability Entropy. This allows us to measure and compare the interpretability among the models. The most interpretable machine learning model by RIPPER was Gaussian Naïve Bayes. Results show that RIPPER is relatively successful at interpreting other machine learning models; however, it needs some improvements to increase true positive rate.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Cybersecurity for Artificial Intelligence

  • ISBN

    978-3-030-97086-4

  • Počet stran výsledku

    30

  • Strana od-do

    107-136

  • Počet stran knihy

    380

  • Název nakladatele

    Springer, Cham

  • Místo vydání

  • Kód UT WoS kapitoly