Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of Distance Metric Learning to Automated Malware Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00350566" target="_blank" >RIV/68407700:21240/21:00350566 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/ACCESS.2021.3094064" target="_blank" >https://doi.org/10.1109/ACCESS.2021.3094064</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3094064" target="_blank" >10.1109/ACCESS.2021.3094064</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of Distance Metric Learning to Automated Malware Detection

  • Popis výsledku v původním jazyce

    Distance metric learning aims to find the most appropriate distance metric parameters to improve similarity-based models such as k -Nearest Neighbors or k -Means. In this paper, we apply distance metric learning to the problem of malware detection. We focus on two tasks: (1) to classify malware and benign files with a minimal error rate, (2) to detect as much malware as possible while maintaining a low false positive rate. We propose a malware detection system using Particle Swarm Optimization that finds the feature weights to optimize the similarity measure. We compare the performance of the approach with three state-of-the-art distance metric learning techniques. We find that metrics trained in this way lead to significant improvements in the k -Nearest Neighbors classification. We conducted and evaluated experiments with more than 150,000 Windows-based malware and benign samples. Features consisted of metadata contained in the headers of executable files in the portable executable file format. Our experimental results show that our malware detection system based on distance metric learning achieves a 1.09 % error rate at 0.74 % false positive rate (FPR) and outperforms all machine learning algorithms considered in the experiment. Considering the second task related to keeping minimal FPR, we achieved a 1.15 % error rate at only 0.13 % FPR.

  • Název v anglickém jazyce

    Application of Distance Metric Learning to Automated Malware Detection

  • Popis výsledku anglicky

    Distance metric learning aims to find the most appropriate distance metric parameters to improve similarity-based models such as k -Nearest Neighbors or k -Means. In this paper, we apply distance metric learning to the problem of malware detection. We focus on two tasks: (1) to classify malware and benign files with a minimal error rate, (2) to detect as much malware as possible while maintaining a low false positive rate. We propose a malware detection system using Particle Swarm Optimization that finds the feature weights to optimize the similarity measure. We compare the performance of the approach with three state-of-the-art distance metric learning techniques. We find that metrics trained in this way lead to significant improvements in the k -Nearest Neighbors classification. We conducted and evaluated experiments with more than 150,000 Windows-based malware and benign samples. Features consisted of metadata contained in the headers of executable files in the portable executable file format. Our experimental results show that our malware detection system based on distance metric learning achieves a 1.09 % error rate at 0.74 % false positive rate (FPR) and outperforms all machine learning algorithms considered in the experiment. Considering the second task related to keeping minimal FPR, we achieved a 1.15 % error rate at only 0.13 % FPR.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    2021

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    96151-96165

  • Kód UT WoS článku

    000673609900001

  • EID výsledku v databázi Scopus

    2-s2.0-85110818606