Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improving Classification of Malware Families using Learning a Distance Metric

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00347213" target="_blank" >RIV/68407700:21240/21:00347213 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.insticc.org/node/TechnicalProgram/icissp/2021/presentationDetails/103263" target="_blank" >https://www.insticc.org/node/TechnicalProgram/icissp/2021/presentationDetails/103263</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0010326306430652" target="_blank" >10.5220/0010326306430652</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improving Classification of Malware Families using Learning a Distance Metric

  • Popis výsledku v původním jazyce

    The objective of malware family classification is to assign a tested sample to the correct malware family. This paper concerns the application of selected state-of-the-art distance metric learning techniques to malware families classification. The goal of distance metric learning algorithms is to find the most appropriate distance metric parameters concerning some optimization criteria. The distance metric learning algorithms considered in our research learn from metadata, mostly contained in the headers of executable files in the PE file format. Several experiments have been conducted on the dataset with 14,000 samples consisting of six prevalent malware families and benign files. The experimental results showed that the average precision and recall of the k-Nearest Neighbors algorithm using the distance learned on training data were improved significantly comparing when the non-learned distance was used. The k-Nearest Neighbors classifier using the Mahalanobis distance metric learned by the Metric Learning for Kernel Regression method achieved average precision and recall, both of 97.04% compared to Random Forest with a 96.44% of average precision and 96.41% of average recall, which achieved the best classification results among the state-of-the-art ML algorithms considered in our experiments.

  • Název v anglickém jazyce

    Improving Classification of Malware Families using Learning a Distance Metric

  • Popis výsledku anglicky

    The objective of malware family classification is to assign a tested sample to the correct malware family. This paper concerns the application of selected state-of-the-art distance metric learning techniques to malware families classification. The goal of distance metric learning algorithms is to find the most appropriate distance metric parameters concerning some optimization criteria. The distance metric learning algorithms considered in our research learn from metadata, mostly contained in the headers of executable files in the PE file format. Several experiments have been conducted on the dataset with 14,000 samples consisting of six prevalent malware families and benign files. The experimental results showed that the average precision and recall of the k-Nearest Neighbors algorithm using the distance learned on training data were improved significantly comparing when the non-learned distance was used. The k-Nearest Neighbors classifier using the Mahalanobis distance metric learned by the Metric Learning for Kernel Regression method achieved average precision and recall, both of 97.04% compared to Random Forest with a 96.44% of average precision and 96.41% of average recall, which achieved the best classification results among the state-of-the-art ML algorithms considered in our experiments.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 7th International Conference on Information Systems Security and Privacy

  • ISBN

    978-989-758-491-6

  • ISSN

    2184-4356

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    643-652

  • Název nakladatele

    SciTePress

  • Místo vydání

    Madeira

  • Místo konání akce

    Vídeň / Virtuální

  • Datum konání akce

    11. 2. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000664076200068