Generation of Adversarial Malware and Benign Examples Using Reinforcement Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00358962" target="_blank" >RIV/68407700:21240/22:00358962 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-97087-1_1" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-97087-1_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-97087-1_1" target="_blank" >10.1007/978-3-030-97087-1_1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generation of Adversarial Malware and Benign Examples Using Reinforcement Learning
Popis výsledku v původním jazyce
Machine learning is becoming increasingly popular among antivirus developers as a key factor in defence against malware. While machine learning is achieving state-of-the-art results in many areas, it also has drawbacks exploited by many with white-box attacks. Although the white-box scenario is possible in mal- ware detection, the detailed structure of antivirus is often unknown. Consequently, we focused on a pure black-box setup where no information apart from the predicted label is known to the attacker, not even the feature space or predicted score. We implemented our exploratory integrity attack using a reinforcement learning approach on a dataset of portable executable binaries. We tested multiple agent configurations while targeting LightGBM and MalConv classifiers. We achieved an evasion rate of 68.64% and 13.32% against LightGBM and MalConv classifiers, respectively. Besides traditional modelling of malware adversarial samples, we present a setup for creating benign files that can increase the targeted classifier’s false positive rate. This problem was considerably more challenging for our reinforcement learning agents, with an evasion rate of 3.45% and 36.62% against LightGBM and MalConv classifier, respectively. To understand how these attacks transfer from classifiers based purely on machine learning to real-world anti- malware software, we tested the same modified files against seven well-known antiviruses. We achieved an evasion rate of up to 47.09% in malware and 14.29% in benign adversarial attacks.
Název v anglickém jazyce
Generation of Adversarial Malware and Benign Examples Using Reinforcement Learning
Popis výsledku anglicky
Machine learning is becoming increasingly popular among antivirus developers as a key factor in defence against malware. While machine learning is achieving state-of-the-art results in many areas, it also has drawbacks exploited by many with white-box attacks. Although the white-box scenario is possible in mal- ware detection, the detailed structure of antivirus is often unknown. Consequently, we focused on a pure black-box setup where no information apart from the predicted label is known to the attacker, not even the feature space or predicted score. We implemented our exploratory integrity attack using a reinforcement learning approach on a dataset of portable executable binaries. We tested multiple agent configurations while targeting LightGBM and MalConv classifiers. We achieved an evasion rate of 68.64% and 13.32% against LightGBM and MalConv classifiers, respectively. Besides traditional modelling of malware adversarial samples, we present a setup for creating benign files that can increase the targeted classifier’s false positive rate. This problem was considerably more challenging for our reinforcement learning agents, with an evasion rate of 3.45% and 36.62% against LightGBM and MalConv classifier, respectively. To understand how these attacks transfer from classifiers based purely on machine learning to real-world anti- malware software, we tested the same modified files against seven well-known antiviruses. We achieved an evasion rate of up to 47.09% in malware and 14.29% in benign adversarial attacks.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Cybersecurity for Artificial Intelligence
ISBN
978-3-030-97086-4
Počet stran výsledku
23
Strana od-do
3-25
Počet stran knihy
380
Název nakladatele
Springer, Cham
Místo vydání
—
Kód UT WoS kapitoly
—