Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Generation of Adversarial Malware and Benign Examples Using Reinforcement Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00358962" target="_blank" >RIV/68407700:21240/22:00358962 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-97087-1_1" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-97087-1_1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-97087-1_1" target="_blank" >10.1007/978-3-030-97087-1_1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Generation of Adversarial Malware and Benign Examples Using Reinforcement Learning

  • Popis výsledku v původním jazyce

    Machine learning is becoming increasingly popular among antivirus developers as a key factor in defence against malware. While machine learning is achieving state-of-the-art results in many areas, it also has drawbacks exploited by many with white-box attacks. Although the white-box scenario is possible in mal- ware detection, the detailed structure of antivirus is often unknown. Consequently, we focused on a pure black-box setup where no information apart from the predicted label is known to the attacker, not even the feature space or predicted score. We implemented our exploratory integrity attack using a reinforcement learning approach on a dataset of portable executable binaries. We tested multiple agent configurations while targeting LightGBM and MalConv classifiers. We achieved an evasion rate of 68.64% and 13.32% against LightGBM and MalConv classifiers, respectively. Besides traditional modelling of malware adversarial samples, we present a setup for creating benign files that can increase the targeted classifier’s false positive rate. This problem was considerably more challenging for our reinforcement learning agents, with an evasion rate of 3.45% and 36.62% against LightGBM and MalConv classifier, respectively. To understand how these attacks transfer from classifiers based purely on machine learning to real-world anti- malware software, we tested the same modified files against seven well-known antiviruses. We achieved an evasion rate of up to 47.09% in malware and 14.29% in benign adversarial attacks.

  • Název v anglickém jazyce

    Generation of Adversarial Malware and Benign Examples Using Reinforcement Learning

  • Popis výsledku anglicky

    Machine learning is becoming increasingly popular among antivirus developers as a key factor in defence against malware. While machine learning is achieving state-of-the-art results in many areas, it also has drawbacks exploited by many with white-box attacks. Although the white-box scenario is possible in mal- ware detection, the detailed structure of antivirus is often unknown. Consequently, we focused on a pure black-box setup where no information apart from the predicted label is known to the attacker, not even the feature space or predicted score. We implemented our exploratory integrity attack using a reinforcement learning approach on a dataset of portable executable binaries. We tested multiple agent configurations while targeting LightGBM and MalConv classifiers. We achieved an evasion rate of 68.64% and 13.32% against LightGBM and MalConv classifiers, respectively. Besides traditional modelling of malware adversarial samples, we present a setup for creating benign files that can increase the targeted classifier’s false positive rate. This problem was considerably more challenging for our reinforcement learning agents, with an evasion rate of 3.45% and 36.62% against LightGBM and MalConv classifier, respectively. To understand how these attacks transfer from classifiers based purely on machine learning to real-world anti- malware software, we tested the same modified files against seven well-known antiviruses. We achieved an evasion rate of up to 47.09% in malware and 14.29% in benign adversarial attacks.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Cybersecurity for Artificial Intelligence

  • ISBN

    978-3-030-97086-4

  • Počet stran výsledku

    23

  • Strana od-do

    3-25

  • Počet stran knihy

    380

  • Název nakladatele

    Springer, Cham

  • Místo vydání

  • Kód UT WoS kapitoly