The Power of MEME: Adversarial Malware Creation with Model-Based Reinforcement Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00371216" target="_blank" >RIV/68407700:21230/24:00371216 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-51482-1_3" target="_blank" >https://doi.org/10.1007/978-3-031-51482-1_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-51482-1_3" target="_blank" >10.1007/978-3-031-51482-1_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Power of MEME: Adversarial Malware Creation with Model-Based Reinforcement Learning
Popis výsledku v původním jazyce
Due to the proliferation of malware, defenders are increasingly turning to automation and machine learning as part of the malware detection toolchain. However, machine learning models are susceptible to adversarial attacks, requiring the testing of model and product robustness. Meanwhile, attackers also seek to automate malware generation and evasion of antivirus systems, and defenders try to gain insight into their methods. This work proposes a new algorithm that combines Malware Evasion and Model Extraction (MEME) attacks. MEME uses model-based reinforcement learning to adversarially modify Windows executable binary samples while simultaneously training a surrogate model with a high agreement with the target model to evade. To evaluate this method, we compare it with two state-of-the-art attacks in adversarial malware creation, using three well-known published models and one antivirus product as targets. Results show that MEME outperforms the state-of-the-art methods in terms of evasion capabilities in almost all cases, producing evasive malware with an evasion rate in the range of 32–73%. It also produces surrogate models with a prediction label agreement with the respective target models between 97–99%. The surrogate could be used to fine-tune and improve the evasion rate in the future.
Název v anglickém jazyce
The Power of MEME: Adversarial Malware Creation with Model-Based Reinforcement Learning
Popis výsledku anglicky
Due to the proliferation of malware, defenders are increasingly turning to automation and machine learning as part of the malware detection toolchain. However, machine learning models are susceptible to adversarial attacks, requiring the testing of model and product robustness. Meanwhile, attackers also seek to automate malware generation and evasion of antivirus systems, and defenders try to gain insight into their methods. This work proposes a new algorithm that combines Malware Evasion and Model Extraction (MEME) attacks. MEME uses model-based reinforcement learning to adversarially modify Windows executable binary samples while simultaneously training a surrogate model with a high agreement with the target model to evade. To evaluate this method, we compare it with two state-of-the-art attacks in adversarial malware creation, using three well-known published models and one antivirus product as targets. Results show that MEME outperforms the state-of-the-art methods in terms of evasion capabilities in almost all cases, producing evasive malware with an evasion rate in the range of 32–73%. It also produces surrogate models with a prediction label agreement with the respective target models between 97–99%. The surrogate could be used to fine-tune and improve the evasion rate in the future.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010020" target="_blank" >VJ02010020: AI-Dojo: Multiagentní testbed pro výzkum a testování umělé inteligence v kyberbezpečnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
28th European Symposium on Research in Computer Security, The Hague, The Netherlands, September 25–29, 2023, Proceedings, Part I
ISBN
978-3-031-50593-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
21
Strana od-do
44-64
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Basel
Místo konání akce
The Hague
Datum konání akce
25. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001208360100003