Creating valid adversarial examples of malware
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00374597" target="_blank" >RIV/68407700:21240/24:00374597 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11416-024-00516-2" target="_blank" >https://doi.org/10.1007/s11416-024-00516-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11416-024-00516-2" target="_blank" >10.1007/s11416-024-00516-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Creating valid adversarial examples of malware
Popis výsledku v původním jazyce
Because of its world-class results, machine learning (ML) is becoming increasingly popular as a go-to solution for many tasks. As a result, antivirus developers are incorporating ML models into their toolchains. While these models improve malware detection capabilities, they also carry the disadvantage of being susceptible to adversarial attacks. Although this vulnerability has been demonstrated for many models in white-box settings, a black-box scenario is more applicable in practice for the domain of malware detection. We present a method of creating adversarial malware examples using reinforcement learning algorithms. The reinforcement learning agents utilize a set of functionality-preserving modifications, thus creating valid adversarial examples. Using the proximal policy optimization (PPO) algorithm, we achieved an evasion rate of 53.84% against the gradient-boosted decision tree (GBDT) detector. The PPO agent previously trained against the GBDT classifier scored an evasion rate of 11.41% against the neural network-based classifier MalConv and an average evasion rate of 2.31% against top antivirus programs. Furthermore, we discovered that random application of our functionality-preserving portable executable modifications successfully evades leading antivirus engines, with an average evasion rate of 11.65%. These findings indicate that ML-based models used in malware detection systems are sensitive to adversarial attacks and that better safeguards need to be taken to protect these systems.
Název v anglickém jazyce
Creating valid adversarial examples of malware
Popis výsledku anglicky
Because of its world-class results, machine learning (ML) is becoming increasingly popular as a go-to solution for many tasks. As a result, antivirus developers are incorporating ML models into their toolchains. While these models improve malware detection capabilities, they also carry the disadvantage of being susceptible to adversarial attacks. Although this vulnerability has been demonstrated for many models in white-box settings, a black-box scenario is more applicable in practice for the domain of malware detection. We present a method of creating adversarial malware examples using reinforcement learning algorithms. The reinforcement learning agents utilize a set of functionality-preserving modifications, thus creating valid adversarial examples. Using the proximal policy optimization (PPO) algorithm, we achieved an evasion rate of 53.84% against the gradient-boosted decision tree (GBDT) detector. The PPO agent previously trained against the GBDT classifier scored an evasion rate of 11.41% against the neural network-based classifier MalConv and an average evasion rate of 2.31% against top antivirus programs. Furthermore, we discovered that random application of our functionality-preserving portable executable modifications successfully evades leading antivirus engines, with an average evasion rate of 11.65%. These findings indicate that ML-based models used in malware detection systems are sensitive to adversarial attacks and that better safeguards need to be taken to protect these systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computer Virology and Hacking Techniques
ISSN
2263-8733
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
15
Strana od-do
607-621
Kód UT WoS článku
001186154300001
EID výsledku v databázi Scopus
2-s2.0-85187924754