A comparison of adversarial malware generators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00374598" target="_blank" >RIV/68407700:21240/24:00374598 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11416-024-00519-z" target="_blank" >https://doi.org/10.1007/s11416-024-00519-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11416-024-00519-z" target="_blank" >10.1007/s11416-024-00519-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparison of adversarial malware generators
Popis výsledku v původním jazyce
Machine learning has proven to be a valuable tool for automated malware detection, but machine learning systems have also been shown to be subject to adversarial attacks. This paper summarizes and compares related work on generating adversarial malware samples, specifically malicious Windows Portable Executable files. In contrast with previous research, we not only compare generators of adversarial malware examples theoretically, but we also provide an experimental comparison and evaluation for practical usability. We use gradient-based, evolutionary-based, and reinforcement-based approaches to create adversarial samples, which we test against selected antivirus products. The results show that applying optimized modifications to previously detected malware can lead to incorrect classification of the file as benign. Moreover, generated malicious samples can be effectively employed against detection models other than those used to produce them, and combinations of methods can construct new instances that avoid detection. Based on our findings, the Gym-malware generator, which uses reinforcement learning, has the greatest practical potential. This generator has the fastest average sample production time of 5.73 s and the highest average evasion rate of 44.11%. Using the Gym-malware generator in combination with itself further improved the evasion rate to 58.35%. However, other tested methods scored significantly lower in our experiments than reported in the original publications, highlighting the importance of a standardized evaluation environment.
Název v anglickém jazyce
A comparison of adversarial malware generators
Popis výsledku anglicky
Machine learning has proven to be a valuable tool for automated malware detection, but machine learning systems have also been shown to be subject to adversarial attacks. This paper summarizes and compares related work on generating adversarial malware samples, specifically malicious Windows Portable Executable files. In contrast with previous research, we not only compare generators of adversarial malware examples theoretically, but we also provide an experimental comparison and evaluation for practical usability. We use gradient-based, evolutionary-based, and reinforcement-based approaches to create adversarial samples, which we test against selected antivirus products. The results show that applying optimized modifications to previously detected malware can lead to incorrect classification of the file as benign. Moreover, generated malicious samples can be effectively employed against detection models other than those used to produce them, and combinations of methods can construct new instances that avoid detection. Based on our findings, the Gym-malware generator, which uses reinforcement learning, has the greatest practical potential. This generator has the fastest average sample production time of 5.73 s and the highest average evasion rate of 44.11%. Using the Gym-malware generator in combination with itself further improved the evasion rate to 58.35%. However, other tested methods scored significantly lower in our experiments than reported in the original publications, highlighting the importance of a standardized evaluation environment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computer Virology and Hacking Techniques
ISSN
2263-8733
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
17
Strana od-do
623-639
Kód UT WoS článku
001197701800001
EID výsledku v databázi Scopus
2-s2.0-85189454316