Combining Generators of Adversarial Malware Examples to Increase Evasion Rate
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00367091" target="_blank" >RIV/68407700:21240/23:00367091 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0012127700003555" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0012127700003555</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012127700003555" target="_blank" >10.5220/0012127700003555</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining Generators of Adversarial Malware Examples to Increase Evasion Rate
Popis výsledku v původním jazyce
Antivirus developers are increasingly embracing machine learning as a key component of malware defense. While machine learning achieves cutting-edge outcomes in many fields, it also has weaknesses that are exploited by several adversarial attack techniques. Many authors have presented both white-box and black-box generators of adversarial malware examples capable of bypassing malware detectors with varying success. We propose to combine contemporary generators in order to increase their potential. Combining different generators can create more sophisticated adversarial examples that are more likely to evade anti-malware tools. We demonstrated this technique on five well-known generators and recorded promising results. The best-performing combination of AMG-random and MAB-Malware generators achieved an average evasion rate of 15.9% against top-tier antivirus products. This represents an average improvement of more than 36% and 627% over using only the AMG-random and MAB-Malware generators, respectively. The generator that benefited the most from having another generator follow its procedure was the FGSM injection attack, which improved the evasion rate on average between 91.97% and 1,304.73%, depending on the second generator used. These results demonstrate that combining different generators can significantly improve their effectiveness against leading antivirus programs.
Název v anglickém jazyce
Combining Generators of Adversarial Malware Examples to Increase Evasion Rate
Popis výsledku anglicky
Antivirus developers are increasingly embracing machine learning as a key component of malware defense. While machine learning achieves cutting-edge outcomes in many fields, it also has weaknesses that are exploited by several adversarial attack techniques. Many authors have presented both white-box and black-box generators of adversarial malware examples capable of bypassing malware detectors with varying success. We propose to combine contemporary generators in order to increase their potential. Combining different generators can create more sophisticated adversarial examples that are more likely to evade anti-malware tools. We demonstrated this technique on five well-known generators and recorded promising results. The best-performing combination of AMG-random and MAB-Malware generators achieved an average evasion rate of 15.9% against top-tier antivirus products. This represents an average improvement of more than 36% and 627% over using only the AMG-random and MAB-Malware generators, respectively. The generator that benefited the most from having another generator follow its procedure was the FGSM injection attack, which improved the evasion rate on average between 91.97% and 1,304.73%, depending on the second generator used. These results demonstrate that combining different generators can significantly improve their effectiveness against leading antivirus programs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 20th International Conference on Security and Cryptography
ISBN
978-989-758-666-8
ISSN
2184-7711
e-ISSN
—
Počet stran výsledku
9
Strana od-do
778-786
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Porto
Místo konání akce
Řím
Datum konání akce
10. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001072829100080