Time series classification using k-Nearest Neighbours, Multilayer Perceptron and Learning Vector Quantization algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F12%3A00183197" target="_blank" >RIV/62156489:43110/12:00183197 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time series classification using k-Nearest Neighbours, Multilayer Perceptron and Learning Vector Quantization algorithms
Popis výsledku v původním jazyce
We are presenting results comparison of three artificial intelligence algorithms in a classification of time series derived from musical excerpts in this paper. Algorithms were chosen to represent different principles of classification -- statistic approach, neural networks and competitive learning. The first algorithm is a classical k-Nearest neighbours algorithm, the second algorithm is Multilayer Perceptron (MPL), an example of artificial neural network and the third one is a Learning Vector Quantization (LVQ) algorithm representing supervised counterpart to unsupervised Self Organizing Map (SOM). After our own former experiments with unlabelled data we moved forward to the data labels utilization, which generally led to a better accuracy of classification results. As we need huge data set of labelled time series (a priori knowledge of correct class which each time series instance belongs to), we used, with a good experience in former studies, musical excerpts as a source of real-wo
Název v anglickém jazyce
Time series classification using k-Nearest Neighbours, Multilayer Perceptron and Learning Vector Quantization algorithms
Popis výsledku anglicky
We are presenting results comparison of three artificial intelligence algorithms in a classification of time series derived from musical excerpts in this paper. Algorithms were chosen to represent different principles of classification -- statistic approach, neural networks and competitive learning. The first algorithm is a classical k-Nearest neighbours algorithm, the second algorithm is Multilayer Perceptron (MPL), an example of artificial neural network and the third one is a Learning Vector Quantization (LVQ) algorithm representing supervised counterpart to unsupervised Self Organizing Map (SOM). After our own former experiments with unlabelled data we moved forward to the data labels utilization, which generally led to a better accuracy of classification results. As we need huge data set of labelled time series (a priori knowledge of correct class which each time series instance belongs to), we used, with a good experience in former studies, musical excerpts as a source of real-wo
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
60
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
4
Strana od-do
69-72
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—