Deep-Reinforcement-Learning-Based Motion Planning for a Wide Range of Robotic Structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU151852" target="_blank" >RIV/00216305:26210/24:PU151852 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2079-3197/12/6/116" target="_blank" >https://www.mdpi.com/2079-3197/12/6/116</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/computation12060116" target="_blank" >10.3390/computation12060116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep-Reinforcement-Learning-Based Motion Planning for a Wide Range of Robotic Structures
Popis výsledku v původním jazyce
The use of robot manipulators in engineering applications and scientific research has significantly increased in recent years. This can be attributed to the rise of technologies such as autonomous robotics and physics-based simulation, along with the utilization of artificial intelligence techniques. The use of these technologies may be limited due to a focus on a specific type of robotic manipulator and a particular solved task, which can hinder modularity and reproducibility in future expansions. This paper presents a method for planning motion across a wide range of robotic structures using deep reinforcement learning (DRL) algorithms to solve the problem of reaching a static or random target within a pre-defined configuration space. The paper addresses the challenge of motion planning in environments under a variety of conditions, including environments with and without the presence of collision objects. It highlights the versatility and potential for future expansion through the integration of OpenAI Gym and the PyBullet physics-based simulator.
Název v anglickém jazyce
Deep-Reinforcement-Learning-Based Motion Planning for a Wide Range of Robotic Structures
Popis výsledku anglicky
The use of robot manipulators in engineering applications and scientific research has significantly increased in recent years. This can be attributed to the rise of technologies such as autonomous robotics and physics-based simulation, along with the utilization of artificial intelligence techniques. The use of these technologies may be limited due to a focus on a specific type of robotic manipulator and a particular solved task, which can hinder modularity and reproducibility in future expansions. This paper presents a method for planning motion across a wide range of robotic structures using deep reinforcement learning (DRL) algorithms to solve the problem of reaching a static or random target within a pre-defined configuration space. The paper addresses the challenge of motion planning in environments under a variety of conditions, including environments with and without the presence of collision objects. It highlights the versatility and potential for future expansion through the integration of OpenAI Gym and the PyBullet physics-based simulator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computation
ISSN
2079-3197
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
„116“-„“
Kód UT WoS článku
001254584000001
EID výsledku v databázi Scopus
2-s2.0-85196774480