On moduli and arguments of roots of complex trinomials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU152718" target="_blank" >RIV/00216305:26210/24:PU152718 - isvavai.cz</a>
Výsledek na webu
<a href="https://msp.org/pjm/2024/332-1/pjm-v332-n1-p03-p.pdf" target="_blank" >https://msp.org/pjm/2024/332-1/pjm-v332-n1-p03-p.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2140/pjm.2024.332.39" target="_blank" >10.2140/pjm.2024.332.39</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On moduli and arguments of roots of complex trinomials
Popis výsledku v původním jazyce
Root properties of a general complex trinomial have been explored in numerous papers. Two questions have attracted a significant attention: the relationships between the moduli of these roots and the trinomial’s entries, and the location of the roots in the complex plane. We consider several particular problems connected with these topics, and provide new insights into them. As two main results, we describe the set of all trinomials having a root with a given modulus, and derive explicit formula for calculations of the arguments of such roots. In this fashion, we obtain a comprehensive characterization of these roots. In addition, we develop a procedure enabling us to compute moduli and arguments of all roots of a general complex trinomial with arbitrary precision. This procedure is based on the derivation of a family of real transcendental equations for the roots’ moduli, and it is supported by the formula for their arguments. All our findings are compared with the existing results.
Název v anglickém jazyce
On moduli and arguments of roots of complex trinomials
Popis výsledku anglicky
Root properties of a general complex trinomial have been explored in numerous papers. Two questions have attracted a significant attention: the relationships between the moduli of these roots and the trinomial’s entries, and the location of the roots in the complex plane. We consider several particular problems connected with these topics, and provide new insights into them. As two main results, we describe the set of all trinomials having a root with a given modulus, and derive explicit formula for calculations of the arguments of such roots. In this fashion, we obtain a comprehensive characterization of these roots. In addition, we develop a procedure enabling us to compute moduli and arguments of all roots of a general complex trinomial with arbitrary precision. This procedure is based on the derivation of a family of real transcendental equations for the roots’ moduli, and it is supported by the formula for their arguments. All our findings are compared with the existing results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PACIFIC JOURNAL OF MATHEMATICS
ISSN
0030-8730
e-ISSN
—
Svazek periodika
332
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
39-67
Kód UT WoS článku
001363278100003
EID výsledku v databázi Scopus
2-s2.0-85211171904