Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Geometry Optimization of a Highly Flexible Gradient Metamaterial Structure Using a Differential Evolution Algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155226" target="_blank" >RIV/00216305:26210/24:PU155226 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10789725" target="_blank" >https://ieeexplore.ieee.org/document/10789725</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ME61309.2024.10789725" target="_blank" >10.1109/ME61309.2024.10789725</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Geometry Optimization of a Highly Flexible Gradient Metamaterial Structure Using a Differential Evolution Algorithm

  • Popis výsledku v původním jazyce

    Gradient structures can offer great flexibility in parameter tuning, enabling the achievement of tailored mechanical properties for specific applications, and can even outperform their uniform counterparts. However, the design of such complex structures can be challenging, especially when many tunable geometric parameters are involved. To address this challenge, a simplified model that captures the main attributes and behavior of the structure can be employed. In this approach, a reduced number of parameters are optimized, while the remaining parameters are treated as constants throughout the structure. This also reduces the computational demands for simulating the structure with each iteration, thus accelerating the overall optimization process. A method for the geometry optimization of a highly flexible gradient metamaterial structure for the skin of a morphing aircraft wing's leading edge is proposed, utilizing a differential evolution algorithm. Initially, the basics of evolutionary algorithms and their representative, differential evolution, are introduced. Then, the flexible metamaterial skin with gradient bending stiffness, its simplified spring model, and the set of parameters for optimization are presented. Finally, the geometry parameters and the required acting loads are optimized using DE to achieve various deformed shapes that correspond to the morphing wing leading edge at different flight stages. Three levels of complexity of the optimized model are explored: a foundational version suitable for algorithm parameter tuning, an intermediate version for the optimization of geometric parameters and loading for one target shape, and an advanced version aimed at achieving multiple morphing shapes under different loading conditions.

  • Název v anglickém jazyce

    Geometry Optimization of a Highly Flexible Gradient Metamaterial Structure Using a Differential Evolution Algorithm

  • Popis výsledku anglicky

    Gradient structures can offer great flexibility in parameter tuning, enabling the achievement of tailored mechanical properties for specific applications, and can even outperform their uniform counterparts. However, the design of such complex structures can be challenging, especially when many tunable geometric parameters are involved. To address this challenge, a simplified model that captures the main attributes and behavior of the structure can be employed. In this approach, a reduced number of parameters are optimized, while the remaining parameters are treated as constants throughout the structure. This also reduces the computational demands for simulating the structure with each iteration, thus accelerating the overall optimization process. A method for the geometry optimization of a highly flexible gradient metamaterial structure for the skin of a morphing aircraft wing's leading edge is proposed, utilizing a differential evolution algorithm. Initially, the basics of evolutionary algorithms and their representative, differential evolution, are introduced. Then, the flexible metamaterial skin with gradient bending stiffness, its simplified spring model, and the set of parameters for optimization are presented. Finally, the geometry parameters and the required acting loads are optimized using DE to achieve various deformed shapes that correspond to the morphing wing leading edge at different flight stages. Three levels of complexity of the optimized model are explored: a foundational version suitable for algorithm parameter tuning, an intermediate version for the optimization of geometric parameters and loading for one target shape, and an advanced version aimed at achieving multiple morphing shapes under different loading conditions.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2024 21st International Conference on Mechatronics - Mechatronika (ME)

  • ISBN

    979-8-3503-9490-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    186-191

  • Název nakladatele

    IEEE

  • Místo vydání

    Brno, Czech Republic

  • Místo konání akce

    Brno

  • Datum konání akce

    4. 12. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku