Geometry Optimization of a Highly Flexible Gradient Metamaterial Structure Using a Differential Evolution Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155226" target="_blank" >RIV/00216305:26210/24:PU155226 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10789725" target="_blank" >https://ieeexplore.ieee.org/document/10789725</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ME61309.2024.10789725" target="_blank" >10.1109/ME61309.2024.10789725</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometry Optimization of a Highly Flexible Gradient Metamaterial Structure Using a Differential Evolution Algorithm
Popis výsledku v původním jazyce
Gradient structures can offer great flexibility in parameter tuning, enabling the achievement of tailored mechanical properties for specific applications, and can even outperform their uniform counterparts. However, the design of such complex structures can be challenging, especially when many tunable geometric parameters are involved. To address this challenge, a simplified model that captures the main attributes and behavior of the structure can be employed. In this approach, a reduced number of parameters are optimized, while the remaining parameters are treated as constants throughout the structure. This also reduces the computational demands for simulating the structure with each iteration, thus accelerating the overall optimization process. A method for the geometry optimization of a highly flexible gradient metamaterial structure for the skin of a morphing aircraft wing's leading edge is proposed, utilizing a differential evolution algorithm. Initially, the basics of evolutionary algorithms and their representative, differential evolution, are introduced. Then, the flexible metamaterial skin with gradient bending stiffness, its simplified spring model, and the set of parameters for optimization are presented. Finally, the geometry parameters and the required acting loads are optimized using DE to achieve various deformed shapes that correspond to the morphing wing leading edge at different flight stages. Three levels of complexity of the optimized model are explored: a foundational version suitable for algorithm parameter tuning, an intermediate version for the optimization of geometric parameters and loading for one target shape, and an advanced version aimed at achieving multiple morphing shapes under different loading conditions.
Název v anglickém jazyce
Geometry Optimization of a Highly Flexible Gradient Metamaterial Structure Using a Differential Evolution Algorithm
Popis výsledku anglicky
Gradient structures can offer great flexibility in parameter tuning, enabling the achievement of tailored mechanical properties for specific applications, and can even outperform their uniform counterparts. However, the design of such complex structures can be challenging, especially when many tunable geometric parameters are involved. To address this challenge, a simplified model that captures the main attributes and behavior of the structure can be employed. In this approach, a reduced number of parameters are optimized, while the remaining parameters are treated as constants throughout the structure. This also reduces the computational demands for simulating the structure with each iteration, thus accelerating the overall optimization process. A method for the geometry optimization of a highly flexible gradient metamaterial structure for the skin of a morphing aircraft wing's leading edge is proposed, utilizing a differential evolution algorithm. Initially, the basics of evolutionary algorithms and their representative, differential evolution, are introduced. Then, the flexible metamaterial skin with gradient bending stiffness, its simplified spring model, and the set of parameters for optimization are presented. Finally, the geometry parameters and the required acting loads are optimized using DE to achieve various deformed shapes that correspond to the morphing wing leading edge at different flight stages. Three levels of complexity of the optimized model are explored: a foundational version suitable for algorithm parameter tuning, an intermediate version for the optimization of geometric parameters and loading for one target shape, and an advanced version aimed at achieving multiple morphing shapes under different loading conditions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 21st International Conference on Mechatronics - Mechatronika (ME)
ISBN
979-8-3503-9490-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
186-191
Název nakladatele
IEEE
Místo vydání
Brno, Czech Republic
Místo konání akce
Brno
Datum konání akce
4. 12. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—