Performance Comparison of Surrogate-Assisted Evolutionary Algorithms on Computational Fluid Dynamics Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155644" target="_blank" >RIV/00216305:26210/24:PU155644 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-70068-2_19" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70068-2_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70068-2_19" target="_blank" >10.1007/978-3-031-70068-2_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Comparison of Surrogate-Assisted Evolutionary Algorithms on Computational Fluid Dynamics Problems
Popis výsledku v původním jazyce
Surrogate-assisted evolutionary algorithms (SAEAs) are recently among the most widely studied methods for their capability to solve expensive real-world optimization problems. However, the development of new methods and benchmarking with other techniques still relies almost exclusively on artificially created problems. In this paper, we use two real-world computational fluid dynamics problems to compare the performance of eleven state-of-the-art single-objective SAEAs. We analyze the performance by investigating the quality and robustness of the obtained solutions and the convergence properties of the selected methods. Our findings suggest that the more recently published methods, as well as the techniques that utilize differential evolution as one of their optimization mechanisms, perform significantly better than the other considered methods.
Název v anglickém jazyce
Performance Comparison of Surrogate-Assisted Evolutionary Algorithms on Computational Fluid Dynamics Problems
Popis výsledku anglicky
Surrogate-assisted evolutionary algorithms (SAEAs) are recently among the most widely studied methods for their capability to solve expensive real-world optimization problems. However, the development of new methods and benchmarking with other techniques still relies almost exclusively on artificially created problems. In this paper, we use two real-world computational fluid dynamics problems to compare the performance of eleven state-of-the-art single-objective SAEAs. We analyze the performance by investigating the quality and robustness of the obtained solutions and the convergence properties of the selected methods. Our findings suggest that the more recently published methods, as well as the techniques that utilize differential evolution as one of their optimization mechanisms, perform significantly better than the other considered methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA24-12474S" target="_blank" >GA24-12474S: Benchmarking globálních optimalizačních metod</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
18th International Conference on Parallel Problem Solving from Nature
ISBN
978-3-031-70068-2
ISSN
—
e-ISSN
—
Počet stran výsledku
19
Strana od-do
303-321
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
neuveden
Místo konání akce
Hagenberg, Austria
Datum konání akce
14. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—