Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Benchmarking Derivative-Free Global Optimization Methods on Variable Dimension Robotics Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155645" target="_blank" >RIV/00216305:26210/24:PU155645 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10611780" target="_blank" >https://ieeexplore.ieee.org/document/10611780</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CEC60901.2024.10611780" target="_blank" >10.1109/CEC60901.2024.10611780</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Benchmarking Derivative-Free Global Optimization Methods on Variable Dimension Robotics Problems

  • Popis výsledku v původním jazyce

    Several real-world applications introduce derivativefree optimization problems, called variable dimension problems, where the problem's dimension is not known in advance. Despite their importance, no unified framework for developing, comparing, and benchmarking variable dimension problems exists. The robot arm controlling problem is a variable dimension problem where the number of joints to optimize defines the problem's dimension. For a holistic study of global optimization methods, we studied 14 representative methods from 4 different categories, i.e., (i) local search optimization techniques with random restarts, (ii) state-of-the-art DIRECT-type methods, (iii) established Evolutionary Computation approaches, and (iv) state-of-the-art Evolutionary Computation approaches. To investigate the effect of the problem's dimensionality on the solution we generated 20 instances of various combinations among the number of predefined and open decision variables, and we performed experiments for various computational budgets. The results attest that the robot arm controlling problem provides a proper benchmark for variable dimensions. Furthermore, methods in-corporating local search techniques have dominant performance for higher dimensionalities of the problem, while state-of-the-art EC methods dominate in the lower dimensionalities.

  • Název v anglickém jazyce

    Benchmarking Derivative-Free Global Optimization Methods on Variable Dimension Robotics Problems

  • Popis výsledku anglicky

    Several real-world applications introduce derivativefree optimization problems, called variable dimension problems, where the problem's dimension is not known in advance. Despite their importance, no unified framework for developing, comparing, and benchmarking variable dimension problems exists. The robot arm controlling problem is a variable dimension problem where the number of joints to optimize defines the problem's dimension. For a holistic study of global optimization methods, we studied 14 representative methods from 4 different categories, i.e., (i) local search optimization techniques with random restarts, (ii) state-of-the-art DIRECT-type methods, (iii) established Evolutionary Computation approaches, and (iv) state-of-the-art Evolutionary Computation approaches. To investigate the effect of the problem's dimensionality on the solution we generated 20 instances of various combinations among the number of predefined and open decision variables, and we performed experiments for various computational budgets. The results attest that the robot arm controlling problem provides a proper benchmark for variable dimensions. Furthermore, methods in-corporating local search techniques have dominant performance for higher dimensionalities of the problem, while state-of-the-art EC methods dominate in the lower dimensionalities.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA24-12474S" target="_blank" >GA24-12474S: Benchmarking globálních optimalizačních metod</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2024 IEEE Congress on Evolutionary Computation (CEC)

  • ISBN

    979-8-3503-0836-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    „“-„“

  • Název nakladatele

    IEEE

  • Místo vydání

    neuveden

  • Místo konání akce

    Yokohama

  • Datum konání akce

    30. 6. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku