Benchmarking Derivative-Free Global Optimization Methods on Variable Dimension Robotics Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155645" target="_blank" >RIV/00216305:26210/24:PU155645 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10611780" target="_blank" >https://ieeexplore.ieee.org/document/10611780</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC60901.2024.10611780" target="_blank" >10.1109/CEC60901.2024.10611780</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Benchmarking Derivative-Free Global Optimization Methods on Variable Dimension Robotics Problems
Popis výsledku v původním jazyce
Several real-world applications introduce derivativefree optimization problems, called variable dimension problems, where the problem's dimension is not known in advance. Despite their importance, no unified framework for developing, comparing, and benchmarking variable dimension problems exists. The robot arm controlling problem is a variable dimension problem where the number of joints to optimize defines the problem's dimension. For a holistic study of global optimization methods, we studied 14 representative methods from 4 different categories, i.e., (i) local search optimization techniques with random restarts, (ii) state-of-the-art DIRECT-type methods, (iii) established Evolutionary Computation approaches, and (iv) state-of-the-art Evolutionary Computation approaches. To investigate the effect of the problem's dimensionality on the solution we generated 20 instances of various combinations among the number of predefined and open decision variables, and we performed experiments for various computational budgets. The results attest that the robot arm controlling problem provides a proper benchmark for variable dimensions. Furthermore, methods in-corporating local search techniques have dominant performance for higher dimensionalities of the problem, while state-of-the-art EC methods dominate in the lower dimensionalities.
Název v anglickém jazyce
Benchmarking Derivative-Free Global Optimization Methods on Variable Dimension Robotics Problems
Popis výsledku anglicky
Several real-world applications introduce derivativefree optimization problems, called variable dimension problems, where the problem's dimension is not known in advance. Despite their importance, no unified framework for developing, comparing, and benchmarking variable dimension problems exists. The robot arm controlling problem is a variable dimension problem where the number of joints to optimize defines the problem's dimension. For a holistic study of global optimization methods, we studied 14 representative methods from 4 different categories, i.e., (i) local search optimization techniques with random restarts, (ii) state-of-the-art DIRECT-type methods, (iii) established Evolutionary Computation approaches, and (iv) state-of-the-art Evolutionary Computation approaches. To investigate the effect of the problem's dimensionality on the solution we generated 20 instances of various combinations among the number of predefined and open decision variables, and we performed experiments for various computational budgets. The results attest that the robot arm controlling problem provides a proper benchmark for variable dimensions. Furthermore, methods in-corporating local search techniques have dominant performance for higher dimensionalities of the problem, while state-of-the-art EC methods dominate in the lower dimensionalities.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA24-12474S" target="_blank" >GA24-12474S: Benchmarking globálních optimalizačních metod</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE Congress on Evolutionary Computation (CEC)
ISBN
979-8-3503-0836-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
„“-„“
Název nakladatele
IEEE
Místo vydání
neuveden
Místo konání akce
Yokohama
Datum konání akce
30. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—